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1 AboutMoRePaS 2018

The conferenceMoRePaS 2018, hosted in Nantes, is the fourth edition of a series of conferences on Model
Reduction of Parametrized Systems. Previous editions were held in Munster (2009), Gunzburg (2012) and Trieste
(2015).

1.1 Topics

The conference aims at an international exchange of new concepts and ideas with respect to the following topics :
— Data-Assimilation and Data-Driven Methods
— Domain Decomposition Approaches
— Dynamic and Adaptive Approximations, Error Estimation
— High-Dimensional Parameter Spaces
— Interpolation Methods
— Krylov-Subspace, Rational Approximation and Interpolatory Methods
— Large-Scale Applications : Industry and Multiphysics Problems ; HPC
— Model Reduction for Optimization, Estimation, Control, and Uncertainty Quantification
— Multiscale Methods, Closure Approaches, Stabilization Methods
— Nonstationary Discontinuities and Internal Layers
— Proper Orthogonal Decomposition
— Proper Generalized Decomposition
— Reduced Basis Methods
— Statistical and Machine Learning Methods
— System-Theoretic and Structure-Preserving Methods
— Tensor Methods

1.2 Venue

The conference will be located at :
Ecole Centrale de Nantes (Google Maps)
1 Rue de la Noë,
44300 Nantes, FRANCE
Contact : morepas2018@sciencesconf.org

1.3 Committees

Executive Committee

ANTHONY NOUY (Centrale Nantes, France), Chair
GIANLUIGI ROZZA (SISSA, Trieste, Italy), Co-Chair
PETER BENNER (MPI Magdeburg, Germany)
MARIO OHLBERGER (University of Muenster, Germany)
KARSTEN URBAN (Ulm University, Germany)
KAREN WILLCOX (MIT, Cambridge, USA)

Scientific Committee

ANTHONY PATERA (MIT, Cambridge, USA), Chair
PETER BENNER (MPI Magdeburg, Germany)
TOBIAS BREITEN (University of Graz, Austria)
ALBERT COHEN (University Paris 6, France)
KEVIN CARLBERG (Sandia National Laboratories - Livermore, USA)
SERKAN GUGERCIN (Virginia Tech, USA)
BERNARD HAASDONK (University of Stuttgart, Germany)
TONY LELIEVRE (ENPC ParisTech, France)
YVON MADAY (Paris VI, France)
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FABIO NOBILE (EPFL Lausanne, Switzerland)
ANTHONY NOUY (Ecole Centrale de Nantes, France)
MARIO OHLBERGER (University of Muenster, Germany)
STEFAN VOLKWEIN (University of Konstanz, Germany)
GIANLUIGI ROZZA (SISSA, Trieste, Italy)
WIL SCHILDERS (TU Eindhoven, Netherlands)
TATJANA STYKEL (Augsburg, Germany)
KARSTEN URBAN (Ulm University, Germany)
KAREN WILLCOX (MIT, Cambridge, USA)

Organizing committee

The organizing comittee brings together members of Centrale Nantes and University of Nantes.

MARIE BILLAUD-FRIESS (Centrale Nantes, France) marie.billaud-friess@ec-nantes.fr
MATHILDE CHEVREUIL(University of Nantes, France) mathilde.chevreuil@univ-nantes.fr
BÉNÉDICTE GIRARD (Centrale Nantes, France) benedicte.girard@ec-nantes.fr
ERWAN GRELIER (Centrale Nantes, France) erwan.grelier@ec-nantes.fr
GRÉGORY LEGRAIN (Centrale Nantes, France) gregory.legrain@ec-nantes.fr
CÉCILE HABERSTICH(Centrale Nantes, France) cecile.haberstich@ec-nantes.fr
ANTHONY NOUY (Centrale Nantes, France) anthony.nouy@ec-nantes.fr

1.4 Support

The event is supported and organized in the framework of COST (European Cooperation in Science and Techno-
logy) initiative EU-MORNET : European Union Model Reduction Network (TD1307).

The European Union Model Reduction Network (UE-MORNET) COST (European Cooperation in Science and
Technology) initiative brings together all major groups in Europe working on a range of model reduction strategies
with applications in many domains of science and technology.
http://www.eu-mor.net/

Ecole Centrale Nantes, Université de Nantes, Centre Henri Lebesgue and Springer provide support and sponsor-
ship as well.

A top French engineering school with a world-class reputation for education and research.
http://www.ec-nantes.fr/

Major pole of higher education and research in western France, Université de Nantes is one of the French leading
multidisciplinary universities with 75 accredited laboratories.
http://www.univ-nantes.fr/
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The Lebesgue Center is a research and training center in mathematics for Western France, with strong inter-
disciplinary links to the socio-economic environment. It is an excellence cluster (labex) funded by the program
investissements d’avenir.
https://www.lebesgue.fr/

Springer is a scientific, technical and medical portfolio.
http://www.springer.com/
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2 Program

Tuesday, April 10

Time Event
13 :00-13 :45 Welcome of participants
13 :45-14 :00 Opening
14 :00-14 :45 Plenary

· Karen Veroy - Certified Reduced Basis Methods for Variational Data Assimilation

14 :45-16 :00 Session 1
· Stephan Rave - A Globally Mass Conservative Nonlinear Reduced Basis Method for Parabolic Free Boundary Problems

· Andreas Schmidt - Parametric Model Order Reduction for Hamilton-Jacobi-Bellmann Equations and Applications to

Feedback Control

· Babak Maboudi Afkham - Model Reduction While Preserving A First Integral

16 :00-16 :30 Coffee break
16 :30-17 :15 Plenary

· Daniel Kressner - Reduced basis methods : From low-rank matrices to low-rank tensors

17 :15-18 :55 Session 2
· Alexander Grimm - Jointly optimal frequency/parameter sampling for modeling parameterized dynamical systems

· Francesca Bonizzoni - Padé approximation for Helmholtz frequency response problems

· Maciej Balajewicz - Discontinuity-aware model reduction using empirical flow map decomposition

· Andrea Manzoni - Efficient reduction of large-scale unsteady Navier-Stokes flows on domains with variable shape

Wednesday, April 11

Time Event
08 :30-09 :15 Plenary

· Benjamin Peherstorfer - Data-Driven Multifidelity Methods for Monte Carlo Estimation

09 :15-10 :30 Session 3
· Traian Iliescu - Data-Driven Filtered Reduced Order Modeling Of Nonlinear Systems

· Boris Kramer - Estimation of Risk Measures with Reduced-Order Models

· Olivier Zahm - Dimension reduction of the input parameter space of vector-valued functions

10 :30-11 :00 Coffee break
11 :00-11 :45 Plenary

· Olga Mula - State estimation with reduced models and measurement data

11 :45-12 :35 Session 4
· Tommaso Taddei - An adaptive Parameterized-Background Data-Weak Approach to state estimation

· Christian Soize - Data-driven probabilistic learning on manifolds

12 :35-14 :00 Lunch
14 :00-14 :45 Plenary

· Kathrin Smetana - Randomized Model Order Reduction

14 :45-15 :35 Session 5
· Oleg Balabanov - Random Sketching for Model Order Reduction

· Patrick Heas - Low-Rank Dynamic Mode Decomposition : Optimal Solution in Polynomial Time

15 :35-16 :00 Poster Blitz I.A
· Tommaso Taddei - A Reduced Basis Technique for Long-Time Unsteady Turbulent Flows

· Kenan Kergrene - Goal-oriented proper generalized decomposition with application to the detection of delamination

in composites

· James Nichols - Greedy measurement selection for state estimation with reduced models
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· Kevin Carlberg - Conservative model reduction for finite-volume models

· Mickaël Abbas - Directional hyper-reduced model for evaluation of residual welding stresses

· Francesco Ballarin - POD-Galerkin reduced order methods for inverse problems and multi-physics problems in fluid

dynamics

· Matteo Zancanaro - Advances in Hierarchical Model Reduction and combination with other reduction methods

· Shfqat Ali and Saddam Hijazi - The effort of increasing Reynolds number in POD-Galerkin Reduced Order Methods :

from laminar to turbulent flows

· Mylena Mordhorst - Towards a stable and fast dynamic skeletal muscle model

· Cécile Haberstich - Principal component analysis and optimal weighted least-squares method for training tree tensor

networks

· Federico Pichi - Reduced order methods for nonlinear parametric problems with branching solutions

· Erwan Grelier - Statistical learning in tree-based tensor format

· Carolina Introini - A reduced order Kalman filter for CFD applications

· Alessandro Alla - Basis generation in optimal control problems

· Zoi Tokoutsi - Reduced Basis Solutions of Parametrized Optimal Control Problems with Non-Affine Source Terms

16 :00-16 :30 Coffee break
16 :30-16 :55 Session 5

· Bernard Haasdonk - Accelerating Implicit Integrators for Parametric ODE Systems by Greedy Kernel Approximation

16 :55-17 :30 Poster Blitz I.B
· Nikhil Vaidya - Fast Estimation of Blood Vessel Cooling Effects in Hepatic Radio-Frequency Ablation using the Reduced

Basis Method

· Marco Tezzele - Parameter space and model reduction with shape parametrization, by means of active subspace and

POD-Galerkin methods for industrial and biomedical applications

· Kevin Tolle - Efficient Therapy Planning via Model Reduction for Laser-Induced Interstitial Thermotherapy

· Andreas Buhr - Localized Reduced Basis Methods for Time Harmonic Maxwell’s Equations

· Simone Spada - Biogeochemical Oceanographic Data Assimilation : Dimensionality Reduced Kalman Filter for Me-

diterranean Sea Forecasting

· Eva Vidlickova - Dynamical low rank approximation of random time dependent PDEs

· Sofia Guzzetti - Reduced Models for Uncertainty Quantification in the Cardiovascular Network via Domain Decom-

position

· Amina Benaceur - A progressive reduced basis/empirical interpolation method for nonlinear parabolic problems

· Davide Pradovera - An efficient algorithm for Padé-type approximation of the frequency response for the Helmholtz

problem

· Niccolò Dal Santo - Multi space reduced basis preconditioners for large-scale parametrized PDEs

· Stefan Banholzer - Certified POD-Based Multiobjective Optimal Control of Time-Variant Heat Phenomena

· Stefan Hain, Alexander Nüsseler - Reduced basis method for parameter functions

· Mazen Ali - Singular Value Decomposition on Intersection Spaces

· Stefan Hain, Mladjan Radic - A hierarchical a-posteriori error estimator for the reduced basis method

· Carmen Grässle - Combining POD Model Order Reduction with Adaptivity

· Christian Himpe - Parametric Model Order Reduction for Gas Flow Models

· Daming Lou, Siep Weiland - Parametric model order reduction for large-scale and complex systems using Krylov

subspace methods

· Frank Naets - Parametric space-frequency reduction for second-order system models

· Ward Rottiers - Parametric state-time reduction for the transient analysis of multi-physical systems

17 :30-18 :30 Poster session
18 :30-19 :30 Cocktail

Thursday, April 12

Time Event
09 :15-10 :30 Session 6

· Laura Iapichino - Greedy Controllability of Reduced-Order Linear Dynamical Systems
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· Igor Pontes Duff - Balanced truncation model reduction for polynomial control systems

· Felix Schindler - True error control for localized model reduction with online enrichment in PDE constrained optimi-

zation

10 :30-11 :00 Coffee break
11 :00-11 :45 Plenary

· Markus Bachmayr - Reduced Bases and Low-Rank Methods

11 :45-12 :35 Session 7
· Reinhold Schneider - Variational Monte Carlo for the Hierarchical Tensor Representation

· Asma Toumi -Tensor Empirical Interpolation Method for multivariate functions

12 :35-14 :00 Lunch
14 :00-15 :40 Session 8

· Kevin Carlberg - Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction

· Giovanni Stabile - Stabilised finite volume POD-Galerkin ROMs of the incompressible Navier-Stokes equations

· Cédric Herzet - Beyond Petrov-Galerkin projection by using “multi-space” priors

· Julia Brunken - Model reduction based on optimally stable variational formulations of parametrized transport

equations

15 :40-16 :00 Poster Blitz II.A
· Silke Glas - Model Reduction for Hamilton-Jacobi-Bellman Equations resulting from Intraday Trading of Electricity

· Patrick Héas - Optimal Kernel-Based Dynamic Mode Decomposition

· Sebastian Ullmann - Stochastic Galerkin reduced basis methods for parametrized elliptic PDEs with random data

· Ion Gosea - Data-driven model reduction of descriptor linear systems in the Loewner framework

· Olena Burkovska - Model order reduction for parametrized nonlocal variational inequalities

· Dominik Garmatter - Reduced basis methods for MREIT

· Denise Degen - A Geoscientific Application of the Certified Reduced Basis Method

· Y. Yue - On the Interpolation of Reduced Order Models

· Maria Cruz Varona - Some Aspects of Systems Theory and Model Order Reduction for Nonlinear Systems

· Fabrizio Di Donfrancesco - A CFD supported Reduced Order Model using a goal-oriented domain restriction

· Steffen W. R. Werner - Computing the Hankel-Norm Approximation of Large-Scale Descriptor Systems

· Sébastien Riffaud - Reduced-order model approximating the BGK model based on Proper Orthogonal Decomposition

16 :00-16 :30 Coffee break
16 :30-17 :00 Poster Blitz II.B

· Stefano Grivet-Talocia - Data-driven parameterized modeling of LTI systems with guaranteed stability

· Christopher Bach - Reduced-order model assisted optimization of automotive structures with nonlinearities

· Nicolas Montes - PGD Variational vademecum for robot motion planning. A dynamic obstacle case

· Benjamin Fröhlich - Shape Finding in Structural Optimization with Parametrically Reduced Finite-Element Models

· Fahad Alsayyari - A Reduced Order Modeling Approach for Reactor Physics Problems Using Locally Adaptive Sparse

Grids

· Sara Grundel - Clustering Model Order Reduction for Water Networks

· Mikel Balmaseda - Geometrically nonlinear autonomous reduced order model for rotating structures

· Harshit Bansal - Model Order Reduction for convection dominated problems

· Zoran Tomljanovic - Sampling-free parametric model reduction of systems with structured parameter variation

· Babak Maboudi Afkham - Symplectic Model Reduction with respect to Energy Inner Product

· Sridhar Chellappa - Adaptive POD-DEIM model reduction based on an improved error estimator

· Lyes Nechak - On the reducibility of linear dynamic systems with hybrid uncertainties

· Romain Hild - Towards real time computation of 3D magnetic field in parametrized Polyhelix magnets using a reduced

basis Biot-Savart model

· Felipe Galarce - Enhancing Hemodynamics Measurements with Mathematical Modeling

· Cleophas Kweyu - Fast Solution of the Nonlinear Poisson-Boltzmann Equation using the Reduced Basis Method and

Range-Separated Tensor Format

· Dennis Grunert - Faster A-posteriori Error Estimation for Second Order Mechanical Systems

17 :00-18 :00 Poster session
19 :00-23 :55 Gala Dinner
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Friday, April 13

Time Event
08 :30-09 :15 ACOM Plenary

· Volker Mehrmann - Reduced order energy based modeling in energy transport networks

09 :15-10 :30 Session 9
· Manuela Hund - H2× L2 -optimal model order reduction of parametric linear time-invariant systems

· Petar Mlinaric - H2-optimal structure-preserving model order reduction for second-order systems

· Xingang Cao - A Bilinear H2 Model Order Reduction Approach to Linear Parameter-Varying Systems

10 :30-11 :00 Coffee break
11 :00-12 :40 Session 10

·Masayuki Yano - Model reduction of parametrized aerodynamic flows : discontinuous Galerkin reduced basis empirical

quadrature procedure

· Michael Schneier - A Leray Regularized Ensemble-Proper Orthogonal Decomposition Method for Parameterized

Convection-Dominated Flows

· Jean-Baptiste Wahl - High Reynolds Aerothermal Simulations and Reduced Basis

· Gerrit Welper - h and hp Adaptive Interpolation of Transformed Snapshots for Parametric Functions with Jumps

12 :40-12 :50 Closing remarks
12 :50-14 :15 Lunch
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3 Abstracts

3.1 Tuesday, April 10

Karen Veroy, RWTH Aachen University (14 :00-14 :45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Certified Reduced Basis Methods for Variational Data Assimilation

Stephan Rave, University of Münster (14 :45-15 :10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A Globally Mass Conservative Nonlinear Reduced Basis Method for Parabolic Free Boundary Problems

Andreas Schmidt, University of Stuttgart (15 :10-15 :35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Parametric Model Order Reduction for Hamilton-Jacobi-Bellmann Equations and Applications to Feedback Control

Babak Maboudi Afkham, Ecole Polytechnique Fédérale de Lausanne (15 :35-16 :00) . . . . . . . . . . . . . . . . . . . . 13
Model Reduction While Preserving A First Integral

Daniel Kressner, EPFL (16 :30-17 :15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Reduced basis methods : From low-rank matrices to low-rank tensors

Alexander Grimm, Virginia Tech (17 :15-17 :40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Jointly optimal frequency/parameter sampling for modeling parameterized dynamical systems

Francesca Bonizzoni, University of Vienna (17 :40-18 :05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Padé approximation for Helmholtz frequency response problems

Maciej Balajewicz, University of Illinois at Urbana-Champaign (18 :05-18 :30) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Discontinuity-aware model reduction using empirical flow map decomposition

Andrea Manzoni, Politecnico di Milano (18 :30-18 :55) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Efficient reduction of large-scale unsteady Navier-Stokes flows on domains with variable shape
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Certified Reduced Basis Methods for Variational Data Assimilation

S. Boyaval1, M. Grepl2, M. Kärcher3, N. Nellesen2, and K. Veroy2

1Ecole des Ponts ParisTech, Paris, France
2RWTH Aachen University, Aachen, Germany

3NavVis GmbH, Munich, Germany

We propose a certified reduced basis approach for strong- and weak-constraint variational data assim-
ilation for parametrized PDE models. We consider here the case in which the behavior of the system
is modelled by a parametrised PDE where certain model inputs (e.g., model parameters, or in the
time-dependent case, the initial condition) are unknown and where the model itself may be imperfect.
We consider (i) the standard strong-constraint approach, which uses the given observational data to
estimate the unknown model inputs, and (ii) the weak-constraint formulation, which additionally pro-
vides an estimate for the model error, and thus can deal with imperfect models. Since the model error
is a distributed function, the variational data assimilation formulation generally leads to a large-scale
optimization problem that must be solved for every given parameter instance. To solve the prob-
lem efficiently, various reduced order approaches have therefore recently been proposed (see, e.g., [2]).
Here, we build upon recent results on RB methods for optimal control problems to generate certified
reduced order approximations for the state, adjoint, initial condition, and model error. In particular,
we derive a posteriori error estimates for the error of the reduced basis approximation with respect
to the underlying high-dimensional variational data assimilation problem [1]. We present numerical
results for both three- and four-dimensional variational data assimilation (3D- and 4DVAR).

Figure 1: Maximum relative control error and error bound over number of greedy iterations N for
strong-constraint (left) and weak-constraint (right) 4DVAR.

References

[1] M. Kärcher, S. Boyaval, M. A. Grepl, and K. Veroy. Reduced basis approximation and a posteriori
error bounds for 4D-VAR data assimilation. arXiv preprint arXiv:1802.02328, 2018.

[2] R. Ştefănescu, A. Sandu, and I. M. Navon. POD/DEIM reduced-order strategies for efficient four
dimensional variational data assimilation. Journal of Computational Physics, 295:569–595, 2015.
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A Globally Mass Conservative Nonlinear Reduced Basis Method for
Parabolic Free Boundary Problems

Christoph Lehrenfeld1 and Stephan Rave1,2

1Institute for Numerical and Applied Mathematics, University of Göttingen, Germany
2Applied Mathematics, University of Münster, Germany

Despite the many successes of Reduced Basis methods and similar projection-based model reduction
techniques, the application of these methods to problems with moving features of low regularity remains
a largely unresolved challenge [3]. Problems with free boundary Γ(t) ⊂ Rd also fall into this category
when an Eulerian point of view is taken by embedding the solution u(t) into a common function space
on Rd via extension with some constant function outside the moving domain Ω(t). As is easily seen,
the approximation of these extended solution trajectories by low-dimensional linear spaces is bound
to fail due to the moving discontinuity at Γ(t) (e.g. [3]). Hence, model reduction methods need to be
considered which are based on nonlinear approximation spaces.
In this contribution we introduce such a nonlinear Reduced Basis approximation scheme for parabolic
free boundary problems of the form

∂tu(t)− α∆u(t) = 0 in Ω(t), VΓ(t)u(t) + α∂nu(t) = 0 on Γ(t), (1)

where the normal velocity VΓ of Γ(t) determined by the mean curvature H(t) of Γ(t) and the offset
between u(t) and some reference uext:

VΓ(t) = −βH(t) + γ(u(t)− uext) on Γ(t). (2)

For instance, such problems arise from modelling of osmotic cell swelling [1].
Similar to the ideas in [2], our method is based on a linear approximation space for u(t) on a fixed
reference domain Ω̂, nonlinearly transformed by deformation fields Ψ(t) : Ω̂ → Ω(t). By determining
Ψ(t) from the evolution of VΓ(t), the resulting model can be seen as an ALE reformulation of the
original problem (1),(2). Our method is fully offline/online decomposed, and we show that it exactly
preserves the total mass

∫
Ω(t) u(t, x)dx over the entire simulation time interval. We will also discuss the

issue of remeshing in the context of reduced order modelling, which becomes necessary in the presence
of large deformations of Ω(t).

References

[1] F. Lippoth and G. Prokert. Classical solutions for a one-phase osmosis model. Journal of Evolution
Equations, 12(2):413–434, 2012.

[2] M. Ohlberger and S. Rave. Nonlinear Reduced Basis Approximation of Parameterized Evolution
Equations via the Method of Freezing. C. R. Acad. Sci. Paris, Ser. I, 351:901–906, 2013.

[3] M. Ohlberger and S. Rave. Reduced Basis Methods: Success, Limitations and Future Challenges.
In Proceedings of ALGORITMY 2016, 20th Conference on Scientific Computing, Vysoke Tatry,
Podbanske, Slovakia, March 13-18, 2016, pages 1–12, 2016.
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Parametric Model Order Reduction for Hamilton-Jacobi-Bellmann
Equations and Applications to Feedback Control

A. Schmidt1, B. Haasdonk1, A. Alla2, and M. Gunzburger3

1Institute for Applied Analysis and Numerical Simulation, University of Stuttgart,
Pfaffenwaldring 57, D-70569 Stuttgart

{andreas.schmidt,haasdonk}@mathematik.uni-stuttgart.de
2Department of Mathematics, PUC-Rio, Rua Marques de Sao Vicente 225, Rio de Janeiro,

22453-900, Brazil, alla@mat.puc-rio.br
3Department of Scientific Computing,Florida State University,400 Dirac Science

Library,Tallahassee, FL-32304-4120 mgunzburger@fsu.edu

We investigate infinite horizon optimal control problems for parametrized partial differential equations.
Due to the good robustness to unknown disturbances, we are interested in applying feedback control
techniques. A very general framework for feedback control is given by the famous dynamic program-
ming principle (DPP) of R. Bellman. The application of the DPP to such problems yields a nonlinear
system of PDEs for the calculation of the value function, known as the Hamilton-Jacobi-Bellmann
(HJB) equation. It is well-known that classical discretization techniques such as semi-Lagrangian
schemes for this equation suffer severly from the curse of dimensionality, which renders these methods
infeasible for applications that stem from semidiscretized PDEs.
We are thus interested in first reducing the dimension of the control problem by applying parametric
model order reduction techniques, as it was introduced in [3] for nonparametric problems. By combining
recent basis generation techniques (see [4, 2]) with adaptive methods in the parameter domain, we are
able to reach very low dimensional subspaces that contain relevant information and are feasible for
the DPP approach, see [1]. The numerical discretization requires us to find a suitable subset in the
reduced domain, as well as a grid that captures the important parts. For this, we present a technique
to construct nonuniform grids in the reduced domain based on statistical information. Furthermore, we
propose an offline-online splitting of the scheme: In an expensive offline step we precalculate the basis
and perform initial calculations that allow for a large speed-up in a subsequent online phase where
feedback controls for new parameters can then be obtained rapidly. We do this by precalculating
initial guesses for the value functions and function evaluations offline, which then substantially speed
up the online calculation that uses a policy iteration scheme. Finally, we discuss numerical examples
to illustrate the effectiveness of the proposed methods for feedback control of nonlinear PDEs in two
space dimensions.

References

[1] A. Alla, M. Gunzburger, B. Haasdonk, and A. Schmidta. Feedback control of parametrized PDEs
via model order reduction and dynamic programming principle. Technical report, University of
Stuttgart, 2017. In preparation.

[2] A. Alla, A. Schmidt, and B. Haasdonk. Model Order Reduction Approaches for Infinite Horizon
Optimal Control Problems via the HJB Equation, pages 333–347. Springer International Publishing,
Cham, 2017.
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Model Reduction While Preserving A First Integral

Babak Maboudi Afkham1 and Jan S. Hesthaven1

1Ecole Polytechnique Fédérale de Lausanne (EPFL)

Reduced order models have offered a promise for accelerated evaluation of large-scale and parametric
systems of partial differential equations (PDEs). However, many challenges still remain regarding the
efficiency and stability of the solution, especially for time dependent and hyperbolic PDEs. Invariants,
conservation laws and symmetries are a central part of many of such problems which conventional
model reduction methods do not generally preserve. This results in a qualitatively wrong, and often
unstable solution.
Many recent studies are dedicated to conservation of intrinsic structures over the course of model
reduction. Preservation of such structure together with an appropriate time-integration of the reduced
system can help with the stability and robustness of the reduced system over long time-integration.
In the context of the Lagrangian and Hamiltonian systems works in [2, 1, 3] suggest construction of a
reduced order configuration space and an approximated conservation law. This result in a physically
meaning reduced system, where preserving the conservation law would be possible with an appropriate
time-integration scheme. However, These methods are only limited to Lagrangian and Hamiltonian
systems, and subsequently only conserve the Lagrangian and the Hamiltonian. A model reduction
method that can preserve a general invariant is still remain as a domain of research.
Using skew-symmetric tensors [4], we have developed a model reduction method that preserves a first
integral of a system of partial differential equations. This is obtained by restricting the reduced system
to the manifold that satisfies the first integral. An appropriate time-integration scheme, can then
ensure that the solution remains on this manifold. This leads to a compact reduced system that
maintains robustness over long time-integration. The error in the evaluation of the first integral is
constant in time and only depends on the accuracy of the reduced basis.

References

[1] K. Carlberg, R. Tuminaro, and P. Boggs. Preserving Lagrangian structure in nonlinear model
reduction with application to structural dynamics. SIAM Journal on Scientific Computing, 2015.

[2] B. Maboudi Afkham and J. S. Hesthaven. Structure preserving model reduction of parametric
hamiltonian systems. 2016.

[3] L. Peng and K. Mohseni. Symplectic Model Reduction of Hamiltonian Systems. SIAM Journal on
Scientific Computing, 38(1):A1–A27, 2016.

[4] G. Quispel, H. Capel, et al. Solving odes numerically while preserving all first integrals.

13



Reduced basis methods: From low-rank matrices to low-rank tensors

J. Ballani
1,2

and D. Kressner
1
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Switzerland
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The purpose of this talk is to highlight the bene�ts of combining low-rank tensor techniques with
reduced basis methods for solving parametrized problems.
In the �rst part of the talk, we describe a combination of the reduced basis method with low-rank
tensor formats, such as the tensor train and hierarchical Tucker formats, for the e�cient solution of
parameter-dependent linear systems in the case of several parameters. This combination consists of
three ingredients. First, the underlying parameter-dependent operator is approximated by an explicit
a�ne representation in a low-rank tensor format. Second, a standard greedy strategy is used to
construct a problem-dependent reduced basis. Third, the associated reduced parametric system is
solved for all parameter values on a tensor grid simultaneously via a low-rank approach. This allows
us to explicitly represent and store an approximate solution for all parameter values at a time. Once
this approximation is available, the computation of output functionals and the evaluation of statistics
of the solution becomes a cheap online task, without requiring the solution of a linear system.
In the second part of the talk, we described an adaptive multilevel strategy for low-rank tensor tech-
niques, in the context of random di�usion problems. This adaptive scheme allows to equilibrate the
error on all levels by exploiting analytic and algebraic properties of the solution at the same time.
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Jointly optimal frequency/parameter sampling
for modeling parameterized dynamical systems

A. Grimm1, C. Beattie1, and S. Gugercin1
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We consider the model reduction problem for parametrized linear dynamical systems whose input-
output mapping is described in the frequency domain as

ŷ(ıω, p) = H(ıω, p)û(ıω).
û(ıω) and ŷ(ıω, p) denote, respectively, Fourier transforms of the input forcing and the output quantity
of interest (the latter also reflecting the system parameter dependence); p is a scalar parameter; and
H(s, p) is the transfer function. The model reduction process we develop is data-driven and does not
need intrusive access to internal dynamics; we only assume the ability to evaluate the transfer function
H(s, p). For a non-parameterized dynamical system having a transfer function H(s) depending only on
the frequency parameter s, interpolatory model reduction generates a reduced model whose transfer
function interpolates H(s) at selected points that may be chosen optimally so as to minimize a global
H2 error measure [2]. Even though interpolatory methods have been extended to parametric systems,
there exists no jointly optimal strategy for the combined selection of frequency and parameter samples
minimizing a joint (global) error measure (except for some special cases [1]).
We attempt to close this gap in this work by introducing a framework for systematic selection of fre-
quency and parameter interpolation points that jointly minimizes a global H2⊗L2 norm corresponding
to an H2 error measure in the frequency and an L2 error measure in the parameter domain:

‖H‖H2⊗L2 :=
1

4π2
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We note that these optimality conditions extend the Hermite interpolation conditions that appear
in (non-parametric) H2-optimal model reduction to the parametric case; Hermite interpolation at the
mirror image of system poles still plays a fundamental role. We propose a numerical algorithm that
produces a reduced model Ĥ(s, p) satisfying the optimality conditions in (1).
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Padé approximation for Helmholtz frequency response problems

F. Bonizzoni1, F. Nobile2, I. Perugia1, and D. Pradovera2
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This talk deals with the Helmholtz frequency response function S defined on K := [k2min, k
2
max] ⊂ R+,

(the interval of frequencies we are interested in), i.e. the map which associates to each k2 ∈ K, u(k2, ·),
the solution of the Helmholtz problem

−∆u− k2u = f in D ⊂ Rd (d = 1, 2, 3) (1)

endowed with either Dirichlet or Neumann homogeneous boundary conditions on ∂D. The solution
u(k2, ·) belongs to the Hilbert space V , V being H1

0 (D) or H1(D) depending on the imposed boundary
conditions.
Due to the oscillatory behavior of the solutions, the finite element approximation of Helmholtz fre-
quency response problems in mid- and high-frequency regimes is challenging: accurate approximations
are possible only on very fine meshes or with high polynomial approximation degrees. For this reason,
the direct numerical evaluation of the frequency response function for a whole range of frequencies is
often out of reach.
The Helmholtz frequency response function S is proved to be meromorphic in C, with a pole of order one
in every (single or multiple) eigenvalue of the Laplace operator with the considered boundary conditions
(see [1]). To reduce the computational cost we propose a rational approximation technique, which
approximates the Helmholtz frequency response function from evaluations only at few frequencies.
Following [1], we define the Least Square (LS) Padé approximant of S, denoted as S[M/N ], as the ratio

S[M/N ](z) =
P[M/N ](z)

Q[M/N ](z)
, where Q[M/N ] ∈ PN (C) is a polynomial of degree at most N , and P[M/N ] ∈

PM (C;V ), with PM (C;V ) =
{
P (z) =

∑M
m=0 pm(z)zm, pm ∈ V

}
, such that its Taylor series agrees (in

the least square sense) with the power series of S for as many terms as possible.
Let R ∈ R+, and define ν as the number of the isolated (simple) poles of S contained in B(0, R). Letting
the degree of the denominator N be fixed and exactly equal to ν, we prove exponential convergence of
the Padé approximation error ‖S(z) − S[M/N ](z)‖V , as M goes to infinity, on the compact subsets of
B(0, R) \G, G being the set of all the (simple) poles of S contained in B(0, R). (See [1])
Two algorithms to compute the Padé approximant are discussed. 2D numerical tests are provided that
confirm the theoretical upper bound on the convergence error.
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Discontinuity-aware model reduction using empirical flow map
decomposition

Maciej Balajewicz1

1Department of Aerospace Engineering, University of Illinois at Urbana-Champaign

It is well know that traditional linear dimensionality reduction techniques such as PCA/POD/DMD/etc.
often fail to efficiently compress solutions characterized by moving sharp gradients, shocks or discon-
tinuities. Such solutions arise in a wide range of important engineering applications including, for
example, high-speed fluid flows, multi-phase flows with evolving material interfaces, computational fi-
nance and structural contact problems with evolving contact regions. Over the years, a large variety of
discontinuity-aware reduction techniques have been developed. In the first class of such methods, the
symmetry and transport reversal properties of certain hyperbolic PDEs are exploited. Other methods
involve decomposition into global and advection modes governed by optimal mass transfer, or more
direct modeling of discontinuities using basis splitting. Finally, other methods avoid the problem of
modeling discontinuities entirely by domain decomposition where the full-order model is used to re-
construct regions containing the discontinuities. In this work, we summarize a new model reduction
approach for solutions characterized by evolving (in both time and parameter space) sharp gradients,
shocks or discontinuities [1, 2]. Key to our proposed approach is the observation that certain solutions
can be approximated efficiently using a low-rank empirical flow map. This approach can be interpreted
as a data-driven generalization of previous approaches based on symmetry reduction and optimal mass
transport. The reproductive as well as predictive capabilities of the method are evaluated on several
simple yet representative problems including 2D compressible flows governed by the Euler equations,
American options pricing and image reconstruction (Fig. 1).

(a) Original snapshots

(b) Rank 1 reconstruction using POD modes

(c) Rank 1 reconstruction using proposed new approach

Figure 1: 90 degree CCW rotation of character “A”
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Efficient reduction of large-scale unsteady Navier-Stokes flows
on domains with variable shape

A. Manzoni1 and N. Dal Santo2
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Switzerland.

The efficient solution of large-scale fluid dynamics problems depending on both physical and geometrical
parameters is a relevant task in several applications from engineering. In the last decade, reduced
basis (RB) methods [5] have been applied to both steady and unsteady parametrized Navier-Stokes
in several works, see e.g. [3, 1]. However, ensuring both accuracy and efficiency could be an involved
task when facing problems defined on domains of varying shape. Moreover, what really makes the RB
approximation of parametrized (Navier)-Stokes equations hard is ensuring the stability of the resulting
problem. Here we propose a new, general and computationally cheap way to tackle both these issues.
Regarding the way we handle shape variations, we generate domain (and mesh) deformations by means
of a solid extension, obtained by solving a linear elasticity problem [4]. In this way, the knowledge of
an analytical map between a reference domain and the physical, parameter-dependent domain, is not
required. RB spaces are then generated by using either POD or greedy algorithms, relying on finite
element snapshots evaluated over a set of reduced deformed configurations. To deal with unavoidable
nonaffine parametric dependencies, we apply a matrix version of the empirical interpolation method,
allowing to treat geometrical deformations in a non-intrusive, efficient and purely algebraic way.
Regarding stability, we adopt a new algebraic least squares reduced basis (aLS-RB) method [2], which
does not require to enrich the velocity space, as often done when dealing with a velocity-pressure
formulation by using a Galerkin method. This method is shown to be stable (in the sense of a suitable
inf-sup condition) and results in a cheaper, more convenient option both during the offline and the
online stage of computation, compared to the existing G-RB methods.
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Outer-loop applications, such as optimization, control, uncertainty quantification, and inference, form
a loop around a computational model and evaluate the model in each iteration of the loop at different
inputs, parameter configurations, and coefficients. Using a high-fidelity model in each iteration of the
loop guarantees high accuracies but often quickly exceeds available computational resources because
evaluations of high-fidelity models typically are computationally expensive. Replacing the high-fidelity
model with a low-cost, low-fidelity model can lead to significant speedups but introduces an approx-
imation error that is often hard to quantify and control. We introduce multifidelity methods that
combine, instead of replace, the high-fidelity model with low-fidelity models. The overall premise of
our multifidelity methods is that low-fidelity models are leveraged for speedup while occasional re-
course is made to the high-fidelity model to establish accuracy guarantees. The focus of this talk is the
multifidelity Monte Carlo method that samples low- and high-fidelity models to accelerate the Monte
Carlo estimation of statistics of the high-fidelity model outputs. Our analysis shows that the multi-
fidelity Monte Carlo method is optimal in the sense that the mean-squared error of the multifidelity
estimator is minimized for the available computational resources. We provide a convergence analysis,
prove that adapting the low-fidelity models to the Monte Carlo sampling reduces the mean-squared
error, and give an outlook to multifidelity rare event simulation. Our numerical examples demonstrate
that multifidelity Monte Carlo estimation provides unbiased estimators (“accuracy guarantees”) and
achieves speedups of orders of magnitude compared to crude Monte Carlo estimation that uses a single
model alone.

References

[1] B. Peherstorfer, M. Gunzburger, and K. Willcox. Convergence analysis of multifidelity Monte Carlo
estimation. Numerische Mathematik, 2018.

[2] B. Peherstorfer, K. Willcox, and M. Gunzburger. Optimal model management for multifidelity
Monte Carlo estimation. SIAM Journal on Scientific Computing, 38(5):A3163–A3194, 2016.

[3] B. Peherstorfer, K. Willcox, and M. Gunzburger. Survey of multifidelity methods in uncertainty
propagation, inference, and optimization. SIAM Review, 2017. (to appear).

22



Data-Driven Filtered Reduced Order Modeling
Of Nonlinear Systems
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We propose a data-driven filtered reduced order model (DDF-ROM) framework for the numerical sim-
ulation of nonlinear systems [1]. The novel DDF-ROM framework consists of two steps: In the first
step, we use explicit ROM spatial filtering [2] of the nonlinear PDE to construct a filtered ROM. This
filtered ROM is low-dimensional, but is not closed (because of the nonlinearity in the given PDE). In
the second step, we use data-driven modeling to close the filtered ROM, i.e., to model the interaction
between the resolved and unresolved modes. To this end, we use a quadratic ansatz to model this
interaction and close the filtered ROM. To find the new coefficients in the closed filtered ROM, we
solve a least squares problem that minimizes the difference between the full order model data and
our ansatz. We emphasize that the new DDF-ROM is built on general ideas of spatial filtering and
optimization and is independent of restrictive phenomenological arguments, e.g., eddy viscosity.

We investigate the DDF-ROM in the numerical simulation of a channel flow past a circular cylinder.
The DDF-ROM is significantly more accurate than the standard projection ROM (see Fig. 1). Fur-
thermore, the computational costs of the DDF-ROM and the standard projection ROM are similar,
both costs being orders of magnitude lower than the computational cost of the full order model. We
also compare the new DDF-ROM with modern ROM closure models. The DDF-ROM is more accurate
and significantly more efficient than these ROM closure models.
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Figure 1: Plots of energy coefficients vs. time for the DDF-ROM. The DDF-ROM with a quadratic
ansatz is dramatically more accurate than the standard Galerkin ROM (G-ROM).
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We present recent results [1] on two reduced-order model (ROM) based approaches for the efficient and
accurate evaluation of the Conditional-Value-at-Risk (CVaR) of quantities of interest (QoI) in engi-
neering systems with uncertain parameters. CVaR is used to model objective or constraint functions in
risk-averse engineering design and optimization applications under uncertainty. Evaluating the CVaR
of the QoI requires sampling in the tail of the QoI distribution and typically requires many solutions of
an expensive full-order model (FOM) of the engineering system. Our ROM approaches substantially
reduce this computational expense.
Both ROM-based approaches use Monte Carlo (MC) sampling. The first approach replaces the compu-
tationally expensive FOM by inexpensive ROMs. The resulting CVaR estimation error is proportional
to the ROM error in the so-called risk region, a small region in the space of uncertain system in-
puts. The second approach uses importance sampling (IS) and is effective even if the ROM has larger
errors. ROM samples are used to estimate the risk region and to construct a biasing distribution.
Few FOM samples are then drawn from this biasing distribution. Asymptotically as the ROM error
goes to zero, the importance sampling estimator reduces the variance by a factor 1 − β � 1, where
β ∈ (0, 1) is a parameter in the CVaR specification. Numerical experiments on a system of semilinear
convection-diffusion-reaction equations illustrate the performance of the approaches.
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Approximation of multivariate functions is a difficult task when the number of input parameters is
large. Identifying the directions where the function does not significantly vary is a key preprocessing
step to reduce the complexity of the approximation algorithms.

Among other dimensionality reduction tools, the active subspace is defined by means of the gradient
of a scalar-valued function, see [1]. It can be interpreted as the subspace in the parameter space where
the gradient varies the most. In this talk, we propose a natural extension of the active subspace for
vector-valued functions, e.g. functions with multiple scalar-valued outputs or functions taking values
in function spaces. Our methodology consists in minimizing an upper-bound of the approximation
error obtained using Poincaré-type inequalities, see [2].

We also compare the proposed gradient-based approach with the popular and widely used truncated
Karhunen-Loève decomposition (KL). We show that, from a theoretical perspective, the truncated KL
can be interpreted as a method which minimizes a looser upper bound of the error compared to the
one we derived. Also, numerical comparisons show that better dimension reduction can be obtained
provided gradients of the function are available.
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There is nowadays a growing amount of scientific and industrial applications where decisions need to be
taken very fast or even in real time. In many cases, these decisions rely on predictions about the state
of physical systems (blood flux in an artery, neutron population in a nuclear reactor, concentration of
polluants in a city...). Two reconstruction approaches can be considered:

• The first consists in using data from measuring devices and then reconstruct by interpolation or
extrapolation.

• The second approach is based on the knowledge of a physical model, usually a parametrized
Partial Differential Equation, whose solution gives an approximation of the state at every point
of the domain.

Both approaches lead to incomplete and imperfect reconstructions because the system is usually too
complex in order to perfectly sample or model it. This observation motivates to combine measurements
and models in order to benefit from the advantages of both.

Investigations on this coupling are of growing interest in view of the emergence of very promising
methods to treat large amounts of data (big data) that challenge the prominent role of modelling in
many applications. In this talk, we will give an overview and present recent developments on state
estimation methods based on reduced modelling. Our starting point will be the so-called Parametrized
Background Data Weak (PBDW) method, recently introduced in [5]. After recalling its fundamental
properties (optimality of the approximation [3], error bounds, stability), we will present a recent work
on how to use the method in order to optimally select sensor locations and guarantee the stability of
the reconstruction [4]. We will then discuss how to adapt the reduced model depending on the avail-
able measurement information. Finally, we will present applications to nuclear engineering [1, 2] and
hemodynamics problems where understanding how to adapt the methodology for noisy measurements
is a central question.
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We present an Adaptive Parametrized-Background Data-Weak (PBDW) approach to the steady-state
variational data assimilation (state estimation) problem, for systems modeled by partial differential
equations. Given M noisy measurements of the state, the PBDW approach seeks an approximation of
the form u? = z?+η?, where the background z? belongs to a N -dimensional background space informed
by a parameterized mathematical model, and the update η? belongs to a M -dimensional update space
informed by the experimental observations.
We propose a Tikhonov regularization of the constrained statement originally presented in [Y Maday,
AT Patera, JD Penn, M Yano, Int J Numer Meth Eng, 102(5), 933-965], and an adaptive procedure
based on holdout validation, to effectively deal with noisy measurements. We further propose an user-
defined update space, to improve convergence with respect to the number of measurements. Finally,
we discuss an a priori error analysis for general linear functionals in the presence of noise, to identify
the different sources of state estimation error and ultimately motivate the adaptive procedure.
We present results for a synthetic model problem in Acoustics, to illustrate the elements of the method-
ology and to prove its effectiveness.
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A novel methodology [6] allows for generating realizations of a Rn-valued random variable X whose
probability distribution PX is unknown. The solely available information is a given dataset of N ≫ n
independent realizations of X, represented by a matrix [xd] ∈ Mn,N (R), which is thus one sample
of the Mn,N (R)-valued random variable [X] with probability distribution P[X] for which the columns
are N independent copies of X. The probabilistic learning methodology proposed is based (1) on the
construction of a diffusion-maps basis [1] represented by a matrix [g] ∈ MN,m(R) with m ≪ N , which
allows for characterizing the local geometry structure of dataset [xd]; (2) on the construction of a
Reduced Itô Stochastic Differential Equation (R-ISDE) [6] on Mn,m(R) whose invariant measure P[Z]
is constructed as the projection [X] = [Z] [g]T of the ISDE on Mn,N (R) associated with a dissipative
Hamiltonian dynamical system [5, 6] for which the invariant measure is P[X]. The MCMC generator
of realizations is given by solving the R-ISDE with a Stormer-Verlet algorithm and we then show [7]
how a polynomial chaos representation of databases can be constructed. The method is robust and
remains efficient for high dimension and large datasets. Based on such a methodology and introduc-
ing an additional formulation (based on nonparametric statistics) for the computation of conditional
mathematical expectations, we present a novel methodology [2] for constructing the solution of prob-
abilistic nonconvex constrained optimization problems under uncertainties, using only a fixed small
number of function evaluations and probabilistic learning. Such a methodology brings together novel
ideas to tackle an outstanding challenge in nonconvex optimization under uncertainties. Several ex-
amples are presented to highlight different aspects of the proposed probabilistic learning methodology,
in particular for analyzing geophysics [3], complex flows in CFD [4, 8], and climate data.
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In this talk we show how randomization as used say in randomized linear algebra or compressed sensing
can be exploited both for constructing reduced order models and deriving bounds for the approximation
error.
We propose local approximation spaces for localized model order reduction procedures such as domain
decomposition and multiscale methods, where those spaces are constructed from local solutions of the
partial differential equation (PDE) with random boundary conditions [1]. Extending methods from
randomized linear algebra [2] allows us to construct local spaces both for interfaces and subdomains
that yield an approximation that converges provably at a nearly optimal rate and can be generated
at close to optimal computational complexity. To realize the latter, we build the reduced spaces
adaptively, relying on a probabilistic a posteriori error estimator.
Moreover, we propose a constant-free, probabilistic a posteriori error estimator for reduced order ap-
proximations such as the reduced basis approximation for parametrized PDEs. This error estimator
does not require to estimate any stability constants and is both reliable and efficient at (given) high
probability. Here, we rely on results similar to the restricted isometry property employed in compressed
sensing [3]. In order to obtain an a posteriori error estimator that is computationally feasible in the
online stage we employ the solution of a reduced dual problem with random right-hand side, exploiting
the typically fast convergence of reduced order models.

Work in collaboration with A. Buhr (University of Münster), A. T. Patera (Massachusetts Institute of
Technology), and O. Zahm (Massachusetts Institute of Technology)
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For large-scale parameter-dependent problems, the cost of post-processing the snapshots can dominate
the total computational cost of classical model order reduction methods. We propose a methodology
for drastic reduction of the computational complexity. We show how the reduced order model can be
constructed from a small set, called a sketch, of efficiently computable random projections of high-
dimensional vectors. In this way, the heavy operations on large matrices and vectors can be avoided.
Our algorithms are well suited for basically any computational environment. All operations, except
solving linear systems of equations, are embarrassingly parallel. We provide a new version of Proper
Orthogonal Decomposition that can be computed on multiple workstations with a communication cost
independent of the dimension of the full problem. The reduced order model can even be constructed in
a so-called streaming environment, i.e., under extreme memory constraints. In addition, we provide an
efficient way for estimating the residual error. It does not require any assumption on the approximate
solution and can be employed separately from the other part of the methodology. For example, it can
be used for efficient estimation of the error associated with classical Galerkin projection. The new
approach for error estimation is not only more efficient than the classical one but is also less sensitive
to round-off errors.
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This work is concerned with linear approximations of high-dimensional dynamical systems of the form:

{
xt(θ) = ft(xt−1(θ)), t = 1, · · · , T,
x1(θ) = θ,

(1)

where xt(θ) ∈ Rn is the state variable, ft : Rn → Rn, and θ ∈ Rn denotes an initial condition. We
consider a data-driven approach relying on representative trajectories {xt(θi)}Tt=1, i = 1, ..., N , obtained
by running (1) for N different initial conditions {θi}Ni=1 in a given set Θ. A linear approximation

x̃t(θ) = Btθ, (2)

of xt(θ) with rank(Bt) ≤ k ≤ n is said optimal if Bt =
(∏t−1

i=1 A
?
k

)
∈ Rn×n with

A?
k ∈ argmin

A:rank(A)≤k

T,N∑

t=2,i=1

‖xt(θi)−Axt−1(θi)‖22. (3)

Reduced models are then deduced by setting matrices R, L ∈ Cn×k and S ∈ Ck×k such that we have
a decomposition Bt = R(

∏t−1
i=1 S)Lᵀ, lowering as much as possible the cost for computing (2). In

particular, low-rank dynamic mode decomposition (DMD) of (1) is obtained in the case columns of
matrices L and R gather the first k left and right eigen-vectors of A?

k. If the latter is diagonalisable, a
reduced model based on low-rank DMD presents an advantageous complexity scaling as O(kn).

This work deals with the off-line construction of reduced models of the form of (2) relying on (3).
State-of-the-art polynomial-time algorithms are all sub-optimal. We show that we can compute in
polynomial time a solution of (3) and the low-rank DMD of (1). We evaluated the proposed algorithms
by numerical simulations using synthetic and physical data benchmarks. Details of this work can be
found in [1].
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For turbulent flows, estimation of the entire solution trajectory through a low-dimensional Reduced
Order Model might be unfeasible due to the slow convergence of the Kolmogorov N -width, and due
to the sensitivity of the dynamical system to perturbations. Nevertheless, it might still be possible to
estimate the time-averaged solution and associated quantities of interest.
In this poster, we propose a Reduced-Basis technique for the estimation of long-time-averaged solutions
of parametrized turbulent flows. The key elements of our approach are (i) a Greedy technique for the
construction of a low-dimensional reduced space, and (ii) a constrained POD-Galerkin formulation of
the reduced solution. The Greedy technique relies on a novel residual indicator for the error in the
long-time-averaged solution.
We present a number of numerical examples to illustrate our approach, and to demonstrate the effec-
tivity of the error indicator.
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The poster will deal with the development of a mathematical formulation aiming at constructing
adaptive reduced-order models tailored for the approximation of quantities of interest. The main
idea is to formulate a constrained minimization problem that includes re�ned information in the goal
functionals so that the resulting model be capable of delivering enhanced predictions of the quantities
of interest [3]. The formulation will be applied to the so-called Proper Generalized Decomposition
method [2, 1]. Such a paradigm represents a departure from classical goal-oriented approaches where
the reduced model is �rst derived by minimization of the energy, or of the residual functional, and
subsequently adapted via a greedy approach by controlling a posteriori error estimates measured in
terms of quantities of interest using dual-based error estimates. In order to illustrate the e�ciency of
the proposed approach, we will consider the case of a delaminated composite material with the electrical
conductivities of the di�erent plies taken as parameter extra-coordinates in the PGD separation.
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Parametric PDEs of the general form
P(u, a) = 0

are commonly used to describe many physical processes, where P is a differential operator, a is a
high-dimensional vector of parameters and u is the unknown solution belonging to some Hilbert space
V .
Typically one observes m linear measurements of u(a) of the form `i(u) = 〈wi, u〉, i = 1, . . . ,m, where
`i ∈ V ′ and wi are the Riesz representers, and we write Wm = span{w1, . . . , wm}. The goal is to
recover an approximation u∗ of u from the measurements.
The solutions u(a) lie in a manifold within V which we can approximate by a linear space Vn, where
n is of moderate dimension. The structure of the PDE ensure that for any a the solution is never too
far away from Vn, that is, dist(u(a), Vn) ≤ ε. In this setting, the observed measurements and Vn can
be combined to produce an approximation u∗ of u up to accuracy

‖u− u∗‖ ≤ β−1(Vn,Wm) ε

where
β(Vn,Wm) := inf

v∈Vn

‖PWmv‖
‖v‖

plays the role of a stability constant. For a given Vn, one relevant objective is to guarantee that
β(Vn,Wm) ≥ γ > 0 with a number of measurements m ≥ n as small as possible. We present results in
this direction when the measurement functionals `i belong to a complete dictionary.
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We present a method for model reduction of finite-volume models that guarantees the resulting
reduced-order model is conservative, thereby preserving the structure intrinsic to finite-volume
discretizations [1]. The proposed reduced-order models associate with optimization problems
characterized by (1) a minimum-residual objective function and (2) nonlinear equality constraints
that explicitly enforce conservation over subdomains. Conservative Galerkin projection arises
from formulating this optimization problem at the time-continuous level, while conservative least-
squares Petrov–Galerkin (LSPG) projection associates with a time-discrete formulation. Figure
1 depicts possible decomposed meshes over which conservation can be enforced for a vertex-
centered finite-volume model. We note that other recent works have also considered ROMs that
associate with constrained optimization problems [3, 2], although none are conservative.
We equip these approaches with hyper-reduction techniques in the case of nonlinear flux and
source terms, and also provide approaches for handling infeasibility. In addition, we perform
analyses that include deriving conditions under which conservative Galerkin and conservative
LSPG are equivalent, as well as deriving a posteriori error bounds.
On a parameterized quasi-1D Euler equation problem, the proposed method not only conserves
mass, momentum, and energy globally, but also has significantly lower state-space errors than
nonconservative reduced-order models such as standard Galerkin and LSPG projection.

(a) 3 subdomains (b) 2 subdomains (c) 1 (global) subdomain

Figure 1: Examples of decomposed meshes. The propose method enforces conservation over each
subdomain (denoted by colors). Note that 1 global subdomain enforces global conservation.
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The welding process produces strains and residual stresses that must be taken into account to evaluate
the �nal quality of the assembly. For that, the simulation of the process by a thermomechanical
computation is very widely used [1]. Numerical simulation uses many parameters (materials, heat
source, boundary conditions) whose e�ects must be studied. But as the compuation becoming very
expensive, massive parametric studies quickly become unusable [4].
To reduce the computation time, we propose an approach based on the spatial and temporal similarity
of thermal results, by a method of hyper-reduction on a slice of the domain.
We suppose the heat source is moves along the Ox axis, considering the domain Ω = [0, LX ]xS it is
possible to separate the variables (x, t) and variables (y, z) for the approximation of temperatures:

uROM (x, y, z, t;µ) = uD +

NS∑

i=1

Ψ̂k(y, z)γ̂k(x, t;µ) (1)

We use SVD method to construct the basis Ψ̂k(y, z). Each plane (y, z) of the mesh has a directional

shape function (ξj(x)) for j = 1, NX , the reduced coordinates γ̂k are:

γ̂k(x, t;µ) =

NX∑

j=1

ξj(x)γp(t;µ) (2)

with p = (j − 1)NS + k and k = 1, ..., NS .
For the mechanical part, we use a more classical method using also hyper-reduction[2] . The domain
of variations of the parameters being very wide, it is often necessary to carry out a correction �nite
elements on the reduced model. In addition, careful attention was given to the evaluation of quantities
in post-treatment (reconstruction of the stresses �eld by gappy-POD). [4]
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In this talk we will focus on recent advances in reduced order modelling for parametrized problems in
computational fluid dynamics, with a special attention to the case of inverse problems, such as optimal
flow control problems and data assimilation, and multi-physics applications.
Among the former, we will discuss applications arising in environmental marine sciences and engineering
[5], namely a pollutant control in the Gulf of Trieste, Italy and a solution tracking governed by quasi-
geostrophic equations describing North Atlantic Ocean dynamic. Similar methodologies will also be
employed in problems related to the modeling of the cardiovascular system [4].
Among the latter, we will present further recent developments on reduction of fluid-structure interaction
problems, based on our earlier work in [1, 3]. Reduced order approaches for parametric optimal flow
control will also be applied in combination with domain decomposition in view of further applications
in multi-physics [2].
This work is in collaboration with Y. Maday (UPMC Université Paris 06, France), L. Jiménez-Juan
(Sunnybrook Health Sciences Centre, Toronto, Canada), P. Triverio (University of Toronto, Canada),
R. Mosetti (National Institute of Oceanography and Applied Geophysics, Trieste, Italy).
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In this work we present address the combination of the Hierarchical Model (Hi-Mod) reduction ap-
proach [2, 6, 5] with projection-based reduced order methods, exploiting either on Greedy Reduced
Basis (RB) or Proper Orthogonal Decomposition (POD) [3], in a parametrized setting. The Hi-Mod
approach, introduced in [2], is suited to reduce problems in pipe-like domains featuring a dominant
axial dynamics, such as those arising for instance in haemodynamics. The Hi-Mod approach aims at
reducing the computational cost by properly combining a finite element discretization of the dominant
dynamics with a modal expansion in the transverse direction. In a parametrized context, the Hi-Mod
approach has been employed as the high-fidelity method during the offline stage of model order reduc-
tion techniques based on RB or POD. The resulting combined reduction methods, which have been
named Hi-RB and Hi-POD, respectively, will be presented with applications in diffusion-advection
problems, fluid dynamics [1, 7] and optimal control problems [4], focusing on the approximation sta-
bility of the proposed methods and their computational performance.
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We present different strategies to be able to increase Reynolds number in Reduced Order Methods
(ROMs), from laminar to turbulent flows, in the context of the incompressible parametrised Navier-
Stokes equations. The proposed methodologies are based on different full order discretisation tech-
niques: the finite element method and the finite volume method. For what concerns finite element full
order discretisations - which in this work aim to be used from low to moderate Reynolds numbers - the
ROMs are based on classical stabilisation approaches like the Brezzi-Pitkaranta (BP), the streamline
upwind Petrov-Galerkin (SUPG), the Galerkin least square (GALS) and then the Variational Multi-
scale Method (VMS) [5, 2, 1]. For what concerns the finite volume full order simulations, which are
performed using RANS-LES turbulence models, and aim to be used for higher Reynolds numbers flows,
a reduced version of the eddy viscosity is included into the reduced order model [3, 4]. The proposed
methodologies are tested on classic benchmark test cases.
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Forward simulations of three-dimensional, continuum-mechanical skeletal muscle models are compu-
tationally demanding and expensive. To adequately represent the muscles’ mechanical behaviour, a
fully dynamic modelling framework based on the theory of finite hyperelasticity, which accounts for
the highly nonlinear, anisotropic, viscoelastic and incompressible material behaviour, needs to be es-
tablished. Discretisation of the governing equations by means of the finite element method yields a
nonlinear second-order DAE system

Mu′′(t) = −Du′(t)−K(u(t)) +A(u(t))w(t) , (1)
0 = G(u(t)) . (2)

This system represents a challenge for solution strategies as well as for the application of model order
reduction techniques. In this contribution, we will compare different solution strategies (DAE index
reduction, different solvers) as well as the performance of reduced order models obtained by means of
Galerkin and Petrov-Galerkin projection using different projection and test spaces.
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One of the most challenging tasks in computational science is the approximation of high-dimensional
functions. Most of the time, only a few information on the functions is available, and approximating
high-dimensional functions requires exploiting low-dimensional structures of these functions.
In this work, the approximation of a function u is built using point evaluations of the function, where
these evaluations are selected adaptively. Such problems are encountered when the function represents
the output of a black-box computer code, a system or a physical experiment for a given value of a set
of input variables.
A multivariate function u(x1, ..., xd) de�ned on a product set X = X1× ...×Xd can be identi�ed with a
tensor of order d. Here, we present an algorithm for the construction of an approximation of a function
u in tree-based tensor format (tree tensor networks whose graphs are dimension partition trees). This
approximation is parametrized by a set of low-order tensors, seen as multilinear vector-valued maps
vα, α being a node of a dimension partition tree T .

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Figure 1: Example of a dimension partition tree T over D = {1, 2, 3, 4}
For example, an approximation v associated with the tree of the Figure 1 takes the form:

v = v1,2,3,4(v1,2(v1(φ1(x1)), v2(φ2(x2)), v3,4(v3(φ3(x3)), v4(φ4(x4)))))

where the φν : Xν → Rnν , ν ∈ {1, 2, 3, 4} are the feature maps.
This algorithm relies on an extension of principal components analysis (PCA) to multivariate functions
in order to estimate the tensors vα. In practice, the PCA is realized on sample-based projections of
the function u, using interpolation or least-squares regression.
Least-squares regression can provide a stable projection but it usually requires a high number of
evaluations of u, which is not a�ordable when one evaluation is very costly. In [1], the authors proposed
an optimal weighted least-squares method, with a choice of weights and samples that garantee an
approximation error of the order of the best approximation error using a minimal number of samples.
We here present an extension of this methodology for the approximation in tree-based format, where
optimal weighted least-squares method is used for the projection onto tensor product spaces. This
approach will be compared with a strategy using standard least-squares method or interpolation (as
proposed in [2]).
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The aim of this work is to show the applicability of the reduced basis model reduction in nonlinear
systems undergoing bifurcations. Bifurcation analysis, i.e., following the different bifurcating branches,
as well as determining the bifurcation point itself, is a complex computational task [4, 3]. Reduced
Order Models (ROM) can potentially reduce the computational burden by several orders of magnitude,
in particular in conjunction with sampling techniques.
In the first task we focus on nonlinear structural mechanics [2], and we deal with an application of
ROM to Von Kármán plate equations, where the buckling effect arises, adopting reduced basis method.
Moreover, in the search of the bifurcation points, it is crucial to supplement the full problem with a
reduced generalized parametric eigenvalue problem, properly paired with state equations and also a
reduced order error analysis. These studies are carried out in view of vibroacoustic applications (in
collaboration with A.T. Patera at MIT). As second task we consider the incompressible Navier-Stokes
equations [1], discretized with the spectral element method, in a channel and a cavity. Both system
undergo bifurcations with increasing Reynolds - and Grashof - number, respectively. Applications of
this model are contraction-expansion channels, found in many biological systems, such as the human
heart, for instance, or crystal growth in cavities, used in semiconductor production processes. This
last task is in collaboration with A. Alla and M. Gunzburger (Florida State University).

Figure 1: Bifurcation plot for the buckling of a rectangular plate (left) and the Coanda effect on the
velocity field solution in an expansion channel problem held by Navier-Stokes equations (right).

References

[1] A. Alla, M. Gunzburger, M. W. Hess, A. Quaini, and G. Rozza. Localized reduced basis approach
for bifurcation problems. In preparation, 2017.

[2] F. Pichi and G. Rozza. Reduced basis approaches for parametrized bifurcation problems held by
nonlinear Von Kármán equations. Submitted, 2017.

[3] G. Pitton, A. Quaini, and G. Rozza. Computational reduction strategies for the detection of steady
bifurcations in incompressible fluid-dynamics: applications to coanda effect in cardiology. Journal
of Computational Physics, 344:534–557, 2017.

[4] G. Pitton and G. Rozza. On the application of reduced basis methods to bifurcation problems in
incompressible fluid dynamics. Journal of Scientific Computing, 73(1):157–177, 2017.

43



Statistical learning in tree-based tensor format

Erwan Grelier1, Anthony Nouy2, and Mathilde Chevreuil1

1Centrale Nantes – Université de Nantes – GeM UMR 6183
2Centrale Nantes – LMJL UMR 6629

Tensor methods are widely used tools for the approximation of high dimensional functions. Such
problems are encountered in uncertainty quantification and statistical learning, where the high dimen-
sionality imposes to use specific techniques, such as rank-structured approximations [1].
In this work, we introduce a statistical learning algorithm for the approximation in tree-based tensor
format, which are tensor networks whose graphs are dimension partition trees (figure 1). This tensor
format includes the Tucker format, the Tensor-Train format, as well as the more general Hierarchical
tensor formats [4]. It can be interpreted as a deep neural network with a particular architecture [2].

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}
{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

Figure 1: Example of a dimension partition tree T over D = {1, · · · , 6}.

The proposed algorithm uses random evaluations of a function to provide a tree-based tensor approxi-
mation, with adaptation of the tree-based rank by using a heuristic criterion based on the higher-order
singular values to select the ranks to increase, and of the approximation spaces of the leaves of the
tree.
We then present a learning algorithm for the approximation under the form

u(x) ≈ v(z1, · · · , zm) (1)

where v is a tensor in tree-based format and the zi = gi(x), 1 ≤ i ≤ m are new variables. A strategy
based on the projection pursuit regression [3] is proposed to compute the mappings gi and increase the
effective dimension m.
The methods are illustrated on different examples to show their efficiency and adaptability as well
as the power of representation of the tree-based tensor format, possibly combined with changes of
variables.
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In the last decade, the importance of numerical simulations for the analysis of complex engineering
systems, such as thermo-fluid dynamics in nuclear reactors, has grown exponentially. In spite of the
large experimental databases available for validation of mathematical models, in order to identify the
most suitable one for the system under investigation, the inverse integration of such data into the
CFD model is nowadays an ongoing challenge. In addition, such integration could tackle the problem
of propagation of epistemic uncertainties, both in the numerical model and in the experimental data.
In this framework, the data-assimilation method allows for the dynamic incorporation of observations
within the computational model. Perhaps the most famous among these methods, due to its simple
implementation and yet robust nature, is the Kalman filter. Although this approach has found success
in fields such as weather forecast and geoscience, its application in Computational Fluid-Dynamics
(CFD) is still in its first stages. In this setting, a new algorithm based on the integration between
the segregated approach, which is the most common method adopted by CFD applications for the
solution of the incompressible Navier-Stokes equations, and a Kalman filter modified for fluid-dynamics
problems, while preserving mass conservation of the solution, has already been developed and tested
in a previous work.
Whereas such method is able to robustly integrate experimental data within the numerical model, its
computational cost increases with model complexity. In particular, in high-fidelity realistic scenarios
the error covariance matrix for the model, which represents the uncertainties associated with it, becomes
dense, thus affecting the efficiency and computational cost of the method. For this reason, due to
the promised reduction of computational requirements recently investigated [1, 2], which combines
model reduction and data-assimilation, in this work a combination of reduced order model and mass-
conservative Kalman filter within a segregated approach for CFD analysis is proposed. The novelty
lies in the peculiar formulation of the Kalman filter and how to construct a low-dimensional manifold
to approximate, with sufficient accuracy, the high fidelity model. With respect to literature, in which
the full-order Kalman filter is applied to a reduced model, the reduction is performed directly on the
integrated model in order to obtain a reduced-order Kalman filter already optimised for fluid-dynamics
applications. In order to verify the capabilities of this approach, this reduced-order algorithm has been
tested against the lid-driven cavity test case.
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We consider numerical approximation for the control of linear PDEs for both open and closed loop.
Since control problems are computationally very expensive, we use model order reduction techniques to
reduce its complexity. The general idea is to find basis functions, which allow to project our dynamical
system into a low-dimensional system. It is crucial that the basis functions have information about
the underlying control problem. In this talk, we will focus on recent advances in the computation of
the basis functions.
In the open-loop case, we consider Proper Orthogonal Decomposition (POD) which is a Galerkin

approach where the basis functions are obtained upon information contained in time snapshots of the
PDE related to given input data. This constitutes the bottleneck of the method. We also show that
for POD in optimal control problems it is important to have knowledge about the controlled system at
the right time instances. Therefore, we propose to determine the time instances (snapshot locations)
by reformulating the optimality conditions and using a-posteriori error control (see [1]).
In the closed-loop case, we explore order reduction techniques for solving the algebraic Riccati

equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem
(LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system,
for instance by means of e.g. POD, and then solve the corresponding ARE. Alternatively, iterative
methods can be used to directly solve the ARE and use its approximate solution to estimate quantities
associated with the LQR. We propose a class of Petrov-Galerkin (see [2]) strategies that simultaneously
reduce the dynamical system while approximately solving the ARE by projection. This basis functions
will directly benefit information upon the value function which is fundamental to compute feedback
control.
We present numerical tests to illustrate our approach and show the effectiveness of the proposed

methods in comparison to existing approaches.
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We employ the reduced basis method as a surrogate model for the solution of optimal control problems
governed by parametrized elliptic partial di�erential equations [2] with non-a�ne source terms [3]. The
proposed method constructs a�ne approximations of the non-a�ne parameter dependent source term
by employing the empirical interpolation method (EIM) [1]. We develop online-e�cient a posteriori
error bounds for the error in the optimal control and present numerical results motivated by the
planning of thermal cancer treatments.
In particular we determine the optimal power of the heat source u ∈ U ≡ R, so that the desired
state yd ∈ Y ≡ H1(Ω) is achieved. The desired state yd and the u-dependent state y ∈ Y represent
temperature �elds over the computational domain Ω. The corresponding optimal control problem can
be formulated as follows:
Given parameter µ from the parameter set D, �nd

min(y,u)∈Y×UJ(y, u;µ) :=
1

2
‖y − yd‖2L2(Ω) +

λ

2
|u|2, (1)

so that (y, u) ∈ Y × U solves a(y, v;µ) = b(v;µ)u+ f(v;µ), for all v ∈ Y. (2)

Here both the coercive, continuous bilinear form a(·, ·;µ) : Y ×Y → R, and the continuous linear form
f(·;µ) : Y → R are a�ne parameter dependent. However, the linear bounded functional b(·;µ) : Y → R
is non-a�ne in µ.
We present real-time e�cient error bounds for the control variable u. The proposed error bounds take
into account the error introduced by the reduced basis approximation and the error associated with
the EIM interpolation error.
The numerical example under consideration relates to thermal cancer treatments, and is parametrized
with respect to source placement parameters. For a 2-D model the heat source is described using a
Gaussian function, i.e. b(x;µ)u = u exp

(
− |x − µ|2/(2c2)

)
, for all x in the compuational domain Ω

and µ ∈ D and the di�usion of heat in living tissue is described using the Pennes bioheat model [4].
in this case, the placement parameters µ ∈ D ⊂ R2 correspond to the center of the Gaussian.
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In this presentation, we want to demonstrate how kernel-based approximation methods can contribute
to a paradigm of “Data-based Numerical Mathematics”. Parametric MOR has intensively focussed on
approximately solving parametric high-dimensional PDE and ODE systems during the last decades.
We want to widen this view to more general parametric problems in numerical mathematics, that might
benefit from the same concept: 1) gathering data from solving some specific problem instantiations, 2)
processing this data and obtain a surrogate that can be used for 3) rapidly solving or approximating
the original parametric problem.
We will first review some basic tools in kernel approximation for the reconstruction of high-dimensional
functions, both in input and output. These methods allow to construct approximants to general
target functions defined on arbitrary domains by means of scattered samples, i.e., without requiring
any structure on the sampling locations. We will then focus on greedy algorithms, in particular the
VKOGA [3], which constructs approximants based on a small subset of the data sites, thus being faster
to evaluate, while still providing a good accuracy, which can even be proven to be quasi-optimal in some
cases [2]. The proof actually makes elegant use of known results for Reduced Basis Methods. These
theoretical and computational features make greedy kernel-based algorithms particularly attractive for
the construction of surrogate models.
Then we will exemplify an application in data-driven numerical mathematics, namely acceleration of
implicit ODE integrators by forecasting. A set of state trajectories precomputed with a high-accuracy
ODE solver is used to train a kernel model which predicts the next point in the trajectory as a function
of the previous one. This model is cheap to evaluate, and it is used in the online phase to provide a good
initialization point for the nonlinear solver of the implicit integrator. The accuracy of the surrogate
model results in a significant reduction of the number of required steps of the solver, thus providing an
overall speedup of the full simulation. Despite the acceleration, the method maintains the accuracy of
the original model. Although the method can be potentially applied to a large variety of solvers and
different ODEs, we will present in detail its use with the implicit Euler method (VKOGA-IE) in the
solution of e.g., the Burgers equation, which is an important test case to demonstrate the method’s
features [1].
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Minimally invasive treatment methods are more appropriate for the treatment of liver cancers because
of the presence of multiple tumours, close proximity to large blood vessels or co-existing conditions
like cirrhosis. Radio-frequency ablation is a minimally invasive treatment method that has become
popular in recent years [1]. In this method, radio-frequency current is passed through the tumour
using a probe. This current produces heat which is intended to kill the tumour cells. The drawback
of this method is dependence of the outcome of the treatment on the amount of experience possessed
by the clinician. One reason for this is the cooling e�ect of blood vessels [2]. Ideally, the treatment
methodology should be such that any clinician can guarantee a high success rate irrespective of the
clinician's experience. With this in view, our objective is to develop a mathematical model of RFA,
which can predict treatment outcomes in the clinical setting.

Figure 1: Left: RFA lesion (pink region) una�ected by blood vessel. Center & Right: two views of
lesion (pink region) a�ected by blood vessel.

With the objective of real-time prediction of RFA in mind, we propose the following study.We consider
a problem setting with a single tumour and a single blood vessel located in its vicinity. The inputs for
the simulation are the parameters related to the size, location and the orientation of the blood vessel,
as well as the active region of the RF probe. The output of interest is the temperature distribution at
the end of the RFA procedure. Since the output is desired within a short amount of time, the use of
model order reduction will be explored.
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In this work we present both industrial and biomedical applications, focusing on shape parametrization
and parameter space reduction by means of active subspaces. In particular we introduce a combined
parameter and model reduction methodology using a POD-Galerkin approach, and its application to
the efficient numerical estimation of a pressure drop in a set of deformed carotids [2]. The aim is to
simulate a wide range of possible occlusions after the bifurcation of the carotid artery. A parametric
description of the admissible deformations, based on radial basis functions interpolation technique
implemented in the PyGeM python package, is introduced. The use of the reduced order model acting
on the reduced parameter space allows significant computational savings and better performances.
Moreover we present the reduction of heterogeneous parameter space in a naval engineering problem,
that is the hydrodynamic flow past the hull of a ship advancing in calm water [3], considering structural
and shape parameters. The geometrical parametrization is done via free form deformation. Some
perspectives on a complete shape optimization pipeline by means of Dynamic Mode Decomposition
(DMD) and POD with interpolation (PODI) are presented [1], together with the integration of the
python packages PyDMD and EZyRB respectively.
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We investigate the planning of minimally invasive tumor treatments via laser-induced thermotherapy.
The goal is to control the laser in order to obtain an optimal treatment, e.g. eradicating the tumor,
while leaving as much healthy tissue unharmed as possible. To this end, we define a PDE-constrained
optimal control problem. As these problems are usually computationally expensive, we propose a
simplified modeling approach using reduced-order models. Numerical results illustrate the viability of
our approach.
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We discuss stable, localized model order reduction of non-coercive but inf-sup stable problems like the
one which arises from the discretization of the time-harmonic Maxwell’s equations.

Localized model order reduction methods have attracted significant attention during the last years.
They have favorable parallelization properties and promise to perform well on cloud architectures,
which become more and more commonplace. We introduced ArbiLoMod [1], a localized reduced basis
method targeted at the important use case of changing problem definition, wherein the changes are of
local nature. This is a common situation in simulation software used by engineers optimizing a CAD
model.
An especially interesting application is the simulation of electromagnetic fields in printed circuit boards,
which is necessary to design high frequency electronics. The simulation of the electromagnetic fields can
be done by solving the time-harmonic Maxwell’s equations, which results in a parameterized, inf-sup
stable problem which has to be solved for many parameters. In this multi-query setting, the reduced
basis method can perform well. Experiments have shown two dimensional time-harmonic Maxwell’s
to be amenable to localized model reduction [2].
However, Galerkin projection of an inf-sup stable problem is not guaranteed to be stable. Existing
stabilization methods for the reduced basis method involve global computations and are thus not
applicable in a localized setting. We discuss a stable, localized projection of inf-sup stable problems
based on localized a posteriori error estimators. While we use time-harmonic Maxwell’s equations as
an example, the same techniques could be used for other inf-sup stable problems, like e.g. acoustics.
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Data Assimilation is a key element to improve the performance of Biogeochemical ocean/marine fore-
casting systems. Handling the very big dimension of the state vector of the system (often of the order
of 106) remains an issue, also considering the computational e�ciency of operational systems. Indeed,
simple product operations involving the covariance matrices are too heavy to be computed for opera-
tional forecasting purposes. Various attempts have been made in literature to reduce the complexity
of this task, often adding strong hypotheses to simplify the problem and decrease the computational
cost.

The MedBFM model system ([2], [3], and referencies thereby), which is responsible for monitoring
and forecasting the biogeochemical state of the Mediterranean Sea within the European Copernicus
Marine Services (see http://marine.copernicus.eu/) assimilate surface chlorophyll data through a
3D Variational algorithm, that decomposes the background error covariance matrix into sequential
operators to reduce complexity [3].

In the present work, we compare the variational scheme with a Kalman Filter from a Bayesian point
of view showing that the Kalman Filter is able to assimilate data with better accuracy.
Therefore, we aim at developing a novel Kalman Filter for the MedBFM system. The novel Kalman
Filter scheme bene�ts from advanced Principal Component Analysis (PCA, [1]) to reduce the dimension
of correlation matrices and improve the computational e�ciency.
Finally, we will discuss our results comparing the new Kalman implementation in the MedBFM system
and the current variational Data Assimilation system in terms of computational performance and
forecast skill assessment.
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Partial differential equations with random coefficients and input data arise in many real world appli-
cations. What they often have in common is that the data describing the PDE model are subject
to uncertainties either due to a lack of knowledge of the system or to its inherent variability. The
numerical approximation of statistics of this random solution poses several challenges, in particular
when the number of random parameters is large and/or the parameter-to-solution map is complex.
Therefore, effective surrogate or reduced models are of great need.

We consider a class of time dependent PDEs with random parameters and search for an approximate
solution in a separable form, i.e. at each time instant expressed as a linear combination of linearly
independent spatial functions multiplied by linearly independent random variables (low rank approx-
imation) in the spirit of a truncated Karhunen-Loève expansion. Since the optimal deterministic and
stochastic modes can significantly change over time, static versions, such as proper orthogonal de-
composition or polynomial chaos expansion, may lose their effectiveness. Instead, here we consider a
dynamical approach in which those modes are computed on-the-fly as solutions of suitable auxiliary
evolution equations. From a geometric point of view, this approach corresponds to constraining the
original dynamics to the manifold of fixed rank functions. The original equations are projected onto
the tangent space of this manifold along the approximate trajectory.

In this poster we recall the construction of the method introduced in [3] and give some implementation
details. The spatial discretization is carried out by the finite element method and the discretization
of the random variables relies on an adaptive choice of sparse grid. We will present some numerical
test cases including the heat equation with a random diffusion coefficient and initial condition as well
as the wave equation with a random wave speed, for which we are applying a dynamical low rank
approximation that preserves the symplectic structure of the governing equations [1, 2].
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Reduced 1D models of the cardiovascular system are widely employed to study the propagation of
pressure waves induced by the mutual interaction between the �uid and the compliant vessel walls. In
particular, the interplay between anomalous pressure waves and pathologies like amputations, stenoses
or devices like stents is of great interest from a medical viewpoint. However, the parameters that
characterize reduced 1D models are often unknown, and feature variability not only from patient to
patient, but also within the same individual, depending on physiological conditions (e.g., rest vs. stress,
and young vs. old). This motivated the design of mathematical and numerical techniques to quantify

the uncertainties in these models. Uncertainty Quanti�cation (UQ) studies on the cardiovascular
network entail two major challenges or limitations (see, e.g., [5, 2, 4]): (i) The employment of full 3D
models for UQ analysis is extremely costly and requires computational resources that may not be easily
accessible by users like hospitals, for �nancial, privacy or time constraints; (ii) Reduced 1D models
may be inaccurate in capturing anomalies of the physiology in presence of cardiovascular pathologies
like stenoses or aneurysms. Following the DDUQ approach presented in [1], we enhance the e�ciency
and parallelism of the solvers by performing UQ at the subsystem level at each time step, and by
propagating the information via Domain Decomposition techniques. We plan to enhance accuracy and
reliability by replacing the 1D models with educated reduced models such as the Transversally Enriched
Pipe Element Method [3], capable of retaining the local cross-sectional dynamics, approximately at
the same cost of 1D reduced models. Research supported by National Science Foundation grant DMS
1419060.
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We investigate new developments of the combined Reduced-Basis and Empirical Interpolation Methods
(RB-EIM) for parametrized nonlinear parabolic problems [1, 2]. In many situations, the cost of the EIM
in the offline stage turns out to be prohibitive since a significant number of nonlinear time-dependent
problems need to be solved using the full-order model.
In the present work, we develop a new methodology, the Progressive RB-EIM (PREIM) method for
nonlinear parabolic problems. The purpose is to reduce the offline cost while maintaining the accuracy
of the RB approximation in the online stage. The key idea is a progressive enrichment of both the EIM
approximation and the RB space, in contrast to the standard approach where the EIM approximation
and the RB space are built separately. PREIM uses full-order computations whenever available and
RB computations otherwise. Another key feature of PREIM is to select twice the parameter in a greedy
fashion, the second selection being made after computing the full-order solution for the firstly-selected
value of the parameter. Numerical examples will be presented on nonlinear heat transfer problems.
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Given an open bounded Lipschitz domain D ⊂ Rd (d = 1, 2, 3), whose boundary is partitioned into
ΓD and ΓN , and f ∈ L2(D), we consider the map S : C → H1

ΓD
(D) = {v ∈ H1(D), v|ΓD

= 0}, which
associates a complex value z with the weak solution of the (complex) Helmholtz problem

�nd S(z) ∈ H1
ΓD

(D) : 〈∇S(z),∇v〉L2(D) − z〈S(z), v〉L2(D) = 〈f, v〉L2(D) ∀v ∈ H1
ΓD

(D).

Several results (see e.g. [1]) show that S is well-de�ned and meromorphic in C \Λ, Λ = {λα}∞α=1 being
the (countable, unbounded) set of (real, non-negative) eigenvalues of the Laplace operator (restricted
to H1

ΓD
(D), with homogeneous Neumann boundary conditions on ΓN ). In particular, it holds

S(z) =

∞∑

α=1

sα
λα − z

, (1)

where the elements of {sα}∞α=1 ⊂ H1
ΓD

(D) are pair-wise orthogonal with respect to the H1
ΓD

(D) inner

product, and the equality in (1) has to be understood with respect to the H1
ΓD

(D) norm.
It is possible to de�ne a Padé-type approximant of any map (1) around z0 ∈ C: given M,N ∈ N, the
exact map is approximated by a rational map S[M/N ] : C \ Λ→ H1

ΓD
(D) of the form

S[M/N ](z) =
P[M/N ](z)

Q[M/N ](z)
=

∑M
j=0 Pj (z − z0)j

∑N
i=0Qi (z − z0)i

,

with {Pj}Mj=0 ⊂ H1
ΓD

(D) and {Qi}Ni=0 ⊂ C.
In [1] the authors de�ne such approximant within a Least-Squares framework, through the minimization
of a suitable functional which involves E′ ≥M+N derivatives of S in z0. This poster introduces a new
de�nition, which relies on a simpli�ed version of the functional, and only requires E ≥ M derivatives
of the solution map. As such, starting from the same amount of information on S, it is possible to �nd
a higher order - hence more accurate - approximant.
In particular, the denominator Q[M/N ] is the minimizer (under some normalization constraints) of the
H1

ΓD
(D) norm of the E-th Taylor coe�cient of QS, as Q varies in the space of polynomials with degree

≤ N . The numerator is then computed by matching as many terms as possible of the Taylor series of
S with those of S[M/N ], analogously to the classical Padé approach.
The resulting approximant is shown to converge exponentially, as M goes to in�nity, to the exact map
S in the H1

ΓD
(D) norm within BN \Λ, BN being an open disk centered at z0 whose boundary includes

the (N + 1)-th element of Λ closer to z0.
Moreover, it is proven that the roots of the denominator Q[M/N ] converge exponentially (as M goes to
in�nity) to the N elements of Λ closer to z0.
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In this talk we present a new two-level preconditioner for the e�cient solution of large-scale linear
systems arising from the �nite element (FE) discretization of parametrized partial di�erential equations
(PDEs). Our preconditioner combines multiplicatively a reduced basis (RB) coarse correction and a
nonsingular �ne grid preconditioner. The proposed technique hinges upon the construction of a new
Multi Space Reduced Basis (MSRB) method proposed in [2], where a RB space is built through proper
orthogonal decomposition at each step of the iterative method used to solve the linear system. As a
matter of fact, each RB space is tailored to solve a particular iteration and aims at �xing the scales
that have not been treated by previous iterations yet. The MSRB preconditioner allows to tune the
error decay by properly choosing the accuracies of the RB spaces, providing a very accurate solution
of the large-scale �nite elements system in very few (often less than 10) iterations. As iterative solver,
we employ the �exible GMRES method.
Standard RB methods strongly rely on the a�ne dependence of the FE matrix and right hand side,
in order to gain the maximum e�ciency with respect to the FE problem. If such assumption is not
satis�ed, an approximated a�ne decomposition must be recovered, e.g. with the Empirical Interpo-
lation Method (EIM). As a matter of fact, an accurate a�ne representation can however represent a
bottleneck and lead to huge o�ine and online costs. The proposed MSRB preconditioning technique is
shown to overcome this limitation thanks to a milder dependence than standard RB methods on such
approximated a�ne decomposition.
Numerical tests are carried out to evaluate the performance of the MSRB preconditioner in di�erent
large-scale modeling settings related to elliptic [2, 1], parabolic and saddle-point [4, 3] parametrized
PDEs. As relevant application, we employ the aforementioned technique to deal with cardiovascular
simulations, where the problem is nona�nely parametrized with respect to physical data and the
deformation of the computational domain.
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Many optimization problems in applications can be formulated using several objective functions, which
are conflicting with each other. This leads to the notion of multiobjective or multicriterial optimization
problems; cf. [4].
This talk discusses the application of the reference point method in combination with model-order
reduction to multiobjective optimal control problems with up to four cost functions.
As an example an optimal control problem arising in the energy efficient heating, ventilation and air-
conditioning (HVAC) operation of a building with the conflicting objectives of energy consumption and
comfort is suggested. Since the reference point method transforms the multiobjective optimal control
problem into a series of scalar optimization problems, the method of proper orthogonal decomposition
(POD) is introduced as an approach for model-order reduction. Due to the lack of a-priori analysis
for the POD method, a-posteriori estimates are important to be able to ensure a good approximation
quality. To this end, an a-posteriori estimate for the problem at hand (cf. [1, 2]) is introduced and
used for developing new strategies for efficiently updating the POD basis in the optimization process
(cf. [3]).
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The Reduced Basis (RB) method is a well-known model order reduction technique that proves ex-
tremely valuable in the multi-query and real-time context of parametrized partial differential equations
(PPDE) [1, 2, 5, 6]. Here, efficiency is guaranteed by splitting the solution into an offline and an online
phase. While in the, possibly time and resource consuming, offline phase a RB solution space is built
up, the online phase is used to rapidly compute a solution in this RB space for each incoming param-
eter. Typically, the parameter space is given by a finite-dimensional subset P ⊂ RP , P ∈ N. However,
one could also think of applications where the parameter space is infinite-dimensional. Consider for
example the following problem: Let Ω ⊂ Rd be a bounded Lipschitz domain and f ∈ H−1(Ω). Find
u ∈ H1

0 (Ω) such that

−div(µ∇u) + u = f in H−1(Ω), (1)

where the diffusion coefficient µ ∈ L∞(Ω) is interpreted as a parameter function. While finite-
dimensional parameter spaces have been extensively studied in recent decades, there has been done
little work on the infinite-dimensional setting so far. First progress in this direction has been made by
[3] where the initial condition of a parabolic partial differential equation is interpreted as a parameter
function.

We propose an ansatz to deal with problems of the form (1) that follows [3, 4]. In particular, the idea
is to capture the main features of µ in terms of a truncated wavelet decomposition up to a certain level.
This approach has two advantages: Firstly, the infinite-dimensional parameter space is discretized to
a finite-dimensional one spanned by the wavelets. Secondly, the locality of wavelets can be exploited
to adaptively enrich the RB spaces by local updates during the online phase.
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A well known result from linear algebra states that any matrix admits a singular value decomposition
(SVD). SVD is a prominent tool in computational science for both analysis and approximation of ma-
trices or tensors of order two. Specifically for model order reduction SVD can be used for constructing
a reduced basis via the proper orthogonal decomposition or to truncate a tensor of order d = 2 to
a tensor with a pre-specified fixed rank or a fixed error tolerance. For more general tensors of order
d > 2 there are several versions of higher order SVD, see [1].
The singular value decomposition can be generalized to any Hilbert tensor spaceH = H1⊗H2 equipped
with the canonical inner product

〈x1 ⊗ y1, x2 ⊗ y2〉H = 〈x1, x2〉H1〈y1, y2〉H2 , (1)

Then a tensor u ∈ H, which can be identified with a Hilbert Schmidt operator from H1 to H2 (or vice
versa), admits a SVD: u =

∑∞
k=1 σkxk⊗yk. A truncation of this decomposition by retaining the first r

terms provides an optimal rank-r approximation with respect to the canonical norm defined by (1). A
prominent example is the space H = L2(Ω1 × Ω2) = L2(Ω1)⊗ L2(Ω2), where u ∈ H can be identified
with the kernel of an integral operator and decomposed as above. As in the finite dimensional case, it
can be extended to tensors of order d > 2.
We are interested in applying SVD to more general spaces, the motivating example being the Sobolev
space H1(Ω) of weakly differentiable functions over a domain Ω ⊂ Rd. Controlling the truncation error
in the energy norm is particularly interesting for PDE applications. To this end, one can apply SVD to
tensors in H1(Ω1)⊗H1(Ω2) equipped with the canonical inner product. However, the resulting space
is not H1(Ω1 × Ω2) but is instead the space H1

mix(Ω1 × Ω2) of functions with mixed regularity. For
large d > 2 this poses a restrictive regularity requirement on u ∈ H1(Ω). On the other hand, the space
H1(Ω) is a Hilbert tensor space equipped with a norm ‖ · ‖H1 which is not stronger than the injective
norm. Thus, we can not identify H1(Ω) with a space of compact operators and apply SVD.
However, it is known that H1(Ω) is isomorphic (here written for d = 2) to the intersection tensor space

H1(Ω1 × Ω2) = (H1(Ω1)⊗ L2(Ω2)) ∩ (L2(Ω1)⊗H1(Ω2))

with equivalent norms. Each of the spaces in the intersection is a Hilbert tensor space equipped with the
canonical inner product for which SVD applies. We want to exploit this information for defining SVD
of u ∈ H1(Ω) and construct low-rank approximations with error control in ‖·‖H1 . Thus, we investigate
generalizations of SVD to such intersection spaces. We consider truncating u in both H1(Ω1)⊗L2(Ω2)
and L2(Ω1)⊗H1(Ω2), as well as in generalized spaces of mixed smoothness. Under certain conditions,
we can bound the truncation error in ‖ · ‖H1 . Furthermore, we propose generalizations for d > 2.
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In context of parametrized partial differential equations (PPDE) a well-known method for dealing
with the high-dimensionality arising from a multi-query and/or real-time situation is the Reduced Ba-
sis Method (RBM), see for example [5]. A-posteriori error estimators are a crucial part in the theory
of RB. They are used both for constructing the RB space XN in the offline-phase and then verifying
the reduced approximation after its computation in the online phase. In this context, an a-posteriori
error estimator has at least two important requirements: (i) The error estimator has to be sharp in
order to yield a reliable estimate of the error; (ii) Its evaluation has to be at least as efficient as the
computation of the reduced approximation to yield online efficiency.
A fairly standard way for constructing such an error estimator is based on the residual in combina-
tion with the inverse of the inf-sup constant. A well-known method for yielding a lower bound of the
inf-sup constant is the Successive Constraint Method (SCM), see for example [2, 3]. Although such a
residual-based error estimator works well in many applications, we are interested in those cases, where
the conditions (i) and (ii) are not fullfilled. This could be the case if the dual norm of the residual can
not be computed efficiently in the online phase and/or the computational complexity of the SCM is
too high in the online phase and/or the inf-sup constant is very small or even vanishes numerically.

From the theory of adaptive finite element methods hierarchical error estimators are well-known, see
for example [1, 4]. In analogy to such hierarchical error estimators we want to present a hierarchical a-
posteriori error estimator for the RBM which uses the difference ‖uN (µ)−uM (µ)‖ of two RB solutions of
different accuracy. We want to investigate the effectivity as well as the performance of the hierarchical
error estimator, especially for those cases where the inf-sup constant is hard to compute numerically
or behaves badly.

References

[1] R. E. Bank and R. K. Smith. A posteriori error estimates based on hierarchical bases. SIAM J.
Numer. Anal., 30(4):921–935, 1993.

[2] Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez. A monotonic evaluation of lower bounds
for inf-sup stability constants in the frame of reduced basis approximations. C.R. Acad. Sci. Math.,
346(23):1295 – 1300, 2008.

[3] Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez. Improved successive constraint method
based a posteriori error estimate for reduced basis approximation of 2D Maxwell’s problem. ESAIM
Math. Model. Numer. Anal., 43(6):1099–1116, 2009.

[4] Y. Huang, H. Wei, W. Yang, and N. Yi. A new a posteriori error estimate for adaptive finite
element methods. In Domain Decomposition Methods in Science and Engineering XIX, pages 63–
74. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[5] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differential equations:
An introduction. Springer International Publishing, Cham; Heidelberg, 2016.

62



Combining POD Model Order Reduction with Adaptivity

C. Gräßle1 and M. Hinze1

1University of Hamburg, Department of Mathematics, Bundesstr. 55, 20146 Hamburg,
Germany

A crucial challenge within snapshot-based POD model order reduction for time-dependent systems
lies in the input dependency. In the ’offline phase’, the POD basis is computed from snapshot data
obtained by solving the high-fidelity model at several time instances. If a dynamical structure is not
captured by the snapshots, this feature will be missing in the ROM solution. Thus, the quality of the
POD approximation can only ever be as good as the input material. In this sense, the accuracy of the
POD surrogate solution is restricted by how well the snapshots represent the underlying dynamical
system.
If one restricts the snapshot sampling process to uniform and static discretizations, this may lead to
very fine resolutions and thus large-scale systems which are expensive to solve or even can not be
realized numerically. Therefore, offline adaptation strategies are introduced which aim to filter out the
key dynamics. On the one hand, snapshot location strategies detect suitable time instances at which the
snapshots shall be generated. On the other hand, adaptivity with respect to space enables us to resolve
important structures within the spatial domain. Motivated from an infinite-dimensional perspective,
we explain how POD in Hilbert spaces can be implemented. The advantage of this approach is that
it only requires the snapshots to lie in a common Hilbert space. This results in a great flexibility
concerning the actual discretization technique, such that we even can consider r-adaptive snapshots
or a blend of snapshots stemming from different discretization methods. Moreover, in the context of
optimal control problems adaptive strategies are crucial in order to adjust the POD model according
to the current optimization iterate.
In this talk, recent results in this direction are discussed and illustrated by numerical experiments.
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Planning the dispatch of contracted gas denominations requires various simulations of the involved
gas transport infrastructure. Furthermore, due to the growing interplay of traditional gas transport
and �uctuating demands related to renewable energies, the number of necessary simulations vastly
increases.
Mathematically, a system of Euler equations, which are coupled according to the underlying gas network
topology, embodies an associated model [2]. A numerical simulation of such a gas �ow model is itself
challenging, as the model is nonlinear and hyperbolic [1]. Thus, the repeated simulation of large
networks for varying supply and demand scenarios often necessitates model order reduction. Yet,
beyond these variable boundary conditions, further attributes of the network may be uncertain or need
to be kept variable throughout simulations, which motivates parametric model order reduction.
Since the boundary conditions together with the quantities of interest form a square input-output
system, the empirical cross Gramian [3] method for parametric systems [4] is applicable. We present the
construction of a global reduced order model for this parametric model and demonstrate its application
on a set of benchmark networks, as well as extensions to this approach.
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Numerical simulations of complex dynamical systems are an indispensable tool in studying thermody-
namic phenomena. However, for complex thermal systems where ultra-high precision simulations are
required, the finite element method (FEM) commonly yields large-scale models. These models demand
considerable computational resources. Therefore, model order reduction techniques are employed to
reduce the computational complexity by replacing the high-order dynamic model with a low-order one.

For systems with uncertain or time-varying parameters there is a persistent need of novel re-
duction techniques. Since creating a new reduced model for every parameter value is inefficient and
computationally costly, there is a strong need for parametric model order reduction (pMOR) techniques
as introduced by [1]. We distinguish among reduction techniques in which both the state dimension
and parameter vector dimension are reduced, and techniques in which state dimension is reduced while
the parameter vector keeps its physical relevance. In addition, we distinguish among time-varying and
time-invariant parametric dependence of high-fidelity models.

In this work, we propose a method for reduced order models that preserve the physical parame-
ters and therefore enable the optimization of the design parameters, material properties or geometries.
More specifically, for an arbitrary rational transfer function G(s, p) in the complex variables s and pa-
rameter p, we aim to find a low order rational Gr(s, p) that matches the moments in both frequencies
and design parameters at dedicated points S := {s1, . . . , sk} ⊂ C and P := {p1, . . . , p`} ⊂ R. We
construct the projection matrices along these two sets.

An a-priori error bound has been derived that represents the local accuracy of the reduced model’s
transfer function nearby the points S × P [3]. Furthermore, this error bound allows for finding the
optimal expansion points and truncation order. Simulation results show that both time domain and
frequency domain indicate that the proposed method delivers good matching and outperforms the
previous work such as [2].
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In many mechanical applications, a design optimization is performed on the transfer function of the

mechanical system in order to limit the vibrational, sound, . . . transmission. In general, this transfer

function H(p, ω) is obtained as:

H(p, ω) =
(
−M(p, ω)ω2 + iC(p, ω)ω +K(p, ω)

)−1
= D(p, ω)−1, (1)

where M, C and K are parameter and frequency dependent mass, damping and sti�ness matrices,

respectively, and a dynamic impedanceD. During manual and automatic design studies, the evaluation

of this transfer function leads to high computational loads due to a large number n of degrees-of-freedom

in the underlying �nite element models for these problems and the large number nω of frequency lines

to evaluate.

In this work, we are exploring a novel model reduction technique for parametric analysis of these

systems of equations. The approach revolves around two main aspects:

• A �rst aspect is the de�nition of a local reduced order basis (LROB) in the frequency range. In

classical approaches, a computed reduced order basis (ROB) which accounts for the parameter

variations is exploited over the full frequency range. However, for systems with high modal

densities, this often leads to a limited reduction ratio. In this work, we propose to exploit a

number of training responses at each frequency line to set up an ROB which is only employed at

that speci�c frequency line Vω. As each basis only has to hold at a speci�c frequency, this basis

can be drastically smaller compared to the general case.

• A second aspect is a hyper-reduction through sampling in the frequency range. In order to reduce

the total number of frequency line evaluations, a greedy sampling algorithm is deployed in order

to determine a limited set of dominant frequency lines for the considered parametric variations.

A corresponding interpolation matrix P is then de�ned to reconstruct the full frequency range

from the obtained samples.

This approach leads to an approximation over the frequency range from ω1 to ωnf
as:



D(p, ω1)

−1

...

D(p, ωnf
)−1


 ≈

ns∑

k=1

Pk

(
VT

ωk
D(p, ωk)Vωk

)−1
, (2)

for ns frequency samples and where Pk corresponds to the interpolation matrix for the sample k.
In order to limit the setup cost of the reduced order model, the LROB setup and hyper-reduction steps

are reversed in the practical implementation, such that the LROBs only need to be computed for the

retained frequency lines. The non-intrusive property of the proposed hyper-reduction scheme is an

important bene�t, since it allows the usage of existing �nite-element software for which interfaces are

typically available to extract system matrices for di�erent frequencies.

The proposed approach is validated on an academic parameterized mass-spring damper system and on

a parameterized vibro-acoustic model.
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In a model based design process, a system-level design optimization on a low-dimensional model is

typically performed at an early stage to compare di�erent topologies and obtain good initial design

parameters. This system-level parametric, time-continuous system-level model

ẋ = f (x,u;p) , (1)

with state x ∈ Rns , input u ∈ Rnu and parameter set p ∈ Rnp is typically a lumped parameter model.

The dimension of the state vector ns of a lumped parameter model is considerably smaller compared to

the dimension of distributed parameter models (typically ns < 50). However, the time discretization

of the low-dimensional system can lead to a high temporal dimension nt due to: (i) high-frequency

behavior in the system which in�uences the stability of the numerical integration or (ii) simulations

over a large time interval. Hence, transient simulations of low-dimensional models in many-query ap-

plications can be computationally expensive, yet the low order ns of the model does not lend itself to

typical model order reduction.

The proposed state-time reduction method addresses this type of problems by reducing the time-

discretized algebraic system

Dχ = s (χ,x0,p) , (2)

with the state-time unknown χ =
{
xT [1], ...,xT [nt]

}T ∈ R(ns.nt), the initial condition x0 ∈ Rns and the

state di�erence D ∈ Rns.nt×ns.nt and system speci�c s ∈ Rns.nt contribution of the time discretization.

The state-time reduction encompasses:

• The computation of a reduced order basis (ROB) V ∈ Rns.nt×nst , which spans a manifold con-

taining an approximation Vq of the solution χ. The ROB consists of the left singular vectors of

the singular value decomposition (SVD) on training data.

• A Galerkin projection of the time-discretized algebraic system (2) with the ROB.

• Hyper-reduction of the non-linear termVT s (Vq,x0,p) with the Discrete Empirical Interpolation

Method (DEIM).

The state-time reduction method leads to a low-dimensional, non-linear reduced order model (ROM)

r (q,p) = ε, (3)

which is solved by

q = argmin
q∈Rnst

‖r (q,p)‖22 . (4)

The developed reduction is relatively non-intrusive such that existing modeling software can be utilized

to evaluate the system equations (1) at certain time instances. Moreover, the single timestep integra-

tion at the selected time instances allows for a fully parallelized evaluation of the the di�erent timesteps.

The developed state-time reduction method is validated on a non-linear, mechatronic drivetrain model

containing an induction motor and a cardanic shaft.

67



3.3 Thurday, April 12

Laura Iapichino, Eindhoven University of Technology (TU/e) (09 :15-09 :40) . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Greedy Controllability of Reduced-Order Linear Dynamical Systems

Igor Pontes Duff, Max Planck Institute for Dynamics of Complex Technical Systems (09 :40-10 :05) . . . . 72
Balanced truncation model reduction for polynomial control systems

Felix Schindler, University of Münster (10 :05-10 :30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
True error control for localized model reduction with online enrichment in PDE constrained optimization

Markus Bachmayr, University of Bonn (11 :00-11 :45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Reduced Bases and Low-Rank Methods

Reinhold Schneider, Technische Universität Berlin (11 :45-12 :10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Variational Monte Carlo for the Hierarchical Tensor Representation

Asma Toumi, Ecole Polytechnique (12 :10-12 :35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Tensor Empirical Interpolation Method for multivariate functions

Kevin Carlberg, Sandia National Laboratories [Livermore] (14 :00-14 :25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction

Giovanni Stabile, International School for Advanced Studies (14 :25-14 :50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Stabilised finite volume POD-Galerkin ROMs of the incompressible Navier-Stokes equations

Cédric Herzet, Institut National de Recherche en Informatique et en Automatique (14 :50-15 :15) . . . . . 79
Beyond Petrov-Galerkin projection by using “multi-space” priors

Julia Brunken, Applied Mathematics, University of Münster (15 :15-15 :40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Model reduction based on optimally stable variational formulations of parametrized transport equations

Silke Glas, Ulm University (15 :40-15 :45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Model Reduction for Hamilton-Jacobi-Bellman Equations resulting from Intraday Trading of Electricity

Patrick Héas, Institut National de Recherche en Informatique et en Automatique (15 :40-15 :45) . . . . . . .82
Optimal Kernel-Based Dynamic Mode Decomposition

Sebastian Ullmann, Graduate School of Computational Engineering, Technische Universität Darmstadt,
Department of Mathematics, Technische Universität Darmstadt (15 :40-15 :45) . . . . . . . . . . . . . . . . . . . . . . . . . 83
Stochastic Galerkin reduced basis methods for parametrized elliptic PDEs with random data

Ion Gosea, Data-Driven System Reduction and Identification Group, Max Planck Institute for Dynamics of
Complex Technical Systems, Magdeburg (15 :45-15 :50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Data-driven model reduction of descriptor linear systems in the Loewner framework

Olena Burkovska, Department of Scientific Computing, Florida State University (15 :45-15 :50) . . . . . . . . 85
Model order reduction for parametrized nonlocal variational inequalities

Dominik Garmatter, Goethe-University Frankfurt am Main (15 :45-15 :50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Reduced basis methods for MREIT

Denise Degen, Computational Geosciences and Reservoir Engineering [RWTH Aachen University], Aachen
Institute for Advanced Study in Computational Engineering Science [RWTH Aachen University] (15 :50-
15 :55) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
A Geoscientific Application of the Certified Reduced Basis Method

68



Y. Yue, Max Planck Institute for Dynamics of Complex Technical Systems (15 :50-15 :55) . . . . . . . . . . . . . . . 88
On the Interpolation of Reduced Order Models

Maria Cruz Varona, Chair of Automatic Control, Technical University of Munich (15 :50-15 :55) . . . . . . . .89
Some Aspects of Systems Theory and Model Order Reduction for Nonlinear Systems

Fabrizio Di Donfrancesco, ONERA - The French Aerospace Lab, Institu d’Alembert - UPMC (15 :55-16 :00)
90
A CFD supported Reduced Order Model using a goal-oriented domain restriction

Steffen W. R. Werner, Max Planck Institute for Dynamics of Complex Technical Systems (15 :55-16 :00) 91
Computing the Hankel-Norm Approximation of Large-Scale Descriptor Systems

Sébastien Riffaud, Inria Bordeaux - Sud-Ouest, Institut de Mathématiques de Bordeaux (15 :55-16 :00) 92
Reduced-order model approximating the BGK model based on Proper Orthogonal Decomposition

Stefano Grivet-Talocia, Politecnico di Torino (16 :30-16 :35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Data-driven parameterized modeling of LTI systems with guaranteed stability

Christopher Bach, BMW Group Research and Innovation Centre, Technische Universität München (16 :30-
16 :35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Reduced-order model assisted optimization of automotive structures with nonlinearities

Nicolas Montes, University CEU Cardenal Herrera - Lucia Hilario, University CEU Cardenal Herrera (16 :35-
16 :40) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
PGD Variational vademecum for robot motion planning. A dynamic obstacle case

Benjamin Fröhlich, Institute of Engineering and Computational Mechanics (16 :35-16 :40) . . . . . . . . . . . . . 96
Shape Finding in Structural Optimization with Parametrically Reduced Finite-Element Models

Fahad Alsayyari, Delft University of Technology (16 :40-16 :45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A Reduced Order Modeling Approach for Reactor Physics Problems Using Locally Adaptive Sparse Grids

Sara Grundel, Max Planck Institute for Dynamics of Complex Technical Systems (16 :40-16 :45) . . . . . . . 98
Clustering Model Order Reduction for Water Networks

Mikel Balmaseda, ONERA, The French Aerospace Lab, Université de Lyon, CNRS INSA-Lyon, LaMCoS UMR5259
(16 :40-16 :45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Geometrically nonlinear autonomous reduced order model for rotating structures

Harshit Bansal, Department of Mathematics and Computer Science, Eindhoven University of Technology
(16 :45-16 :50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Model Order Reduction for convection dominated problems

Zoran Tomljanovic, Department of Mathematics University of Osijek (16 :45-16 :50) . . . . . . . . . . . . . . . . . . 101
Sampling-free parametric model reduction of systems with structured parameter variation

Babak Maboudi Afkham, Computational Mathematics and Simulation Science (16 :45-16 :50) . . . . . . . . 102
Symplectic Model Reduction with respect to Energy Inner Product

Sridhar Chellappa, Max Planck Institute for Dynamics of Complex Technical Systems (16 :50-16 :55) . 103
Adaptive POD-DEIM model reduction based on an improved error estimator

Lyes Nechak, Laboratoire de Tribologie et Dynamique des Systèmes (16 :50-16 :55) . . . . . . . . . . . . . . . . . . . 104
On the reducibility of linear dynamic systems with hybrid uncertainties

69



Romain Hild, IRMA (16 :50-16 :55) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Towards real time computation of 3D magnetic field in parametrized Polyhelix magnets using a reduced basis Biot-
Savart model

Felipe Galarce, Inria de Paris, Laboratoire Jacques-Louis Lions (16 :55-17 :00) . . . . . . . . . . . . . . . . . . . . . . . . 106
Enhancing Hemodynamics Measurements with Mathematical Modeling

Cleophas Kweyu, Max Planck Institute for Dynamics of Complex Technical Systems (16 :55-17 :00) . . .107
Fast Solution of the Nonlinear Poisson-Boltzmann Equation using the Reduced Basis Method and Range-Separated
Tensor Format

Dennis Grunert, Institute of Engineering and Computational Mechanics, University of Stuttgart (16 :55-
17 :00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Faster A-posteriori Error Estimation for Second Order Mechanical Systems

70
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Often a dynamical system is characterized by one or more parameters describing physical features
of the problem or geometrical configurations of the computational domain. As a consequence, by
assuming that the system is controllable, a range of optimal controls exists corresponding to different
parameter values. The goal of the proposed approach is to avoid the computation of a control function
for any instance of the parameters. The greedy controllability [2] consists in the selection of the most
representative values of the parameter set that allows a rapid approximation of the control function
for any desired new parameter value, ensuring that the system is steered to the target within a certain
accuracy. By proposing the reduced basis method [1] in this framework, we are able to consider
linear parametrized partial differential equations (PDEs) in our setting. The computational costs are
drastically reduced and the efficiency of the greedy controllability approach is significantly improved.
As a numerical example a heat equation with convection is studied to illustrate our proposed RB
greedy controllability strategy.
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Balanced truncation is one of the most common model order reduction techniques. This method
mainly relies on reachability and observability energy functionals. For linear systems, these functionals
are encoded by the reachability and observability Gramians. Later, the concept of balanced truncation
and energy functionals was proposed for nonlinear systems in [5]. Therein, it was shown that energy
functionals for nonlinear systems are the solutions of state-dependent nonlinear Hamilton-Jacobi equa-
tions. Thus, they are not only difficult to compute for large-scale systems but also hard to utilize
in the model reduction framework. To overcome this, algebraic Gramians were proposed for a class
of nonlinear systems, namely bilinear [1] and quadratic-bilinear systems [3], and their connections to
energy functionals were also studied [2, 3]. As a result, these algebraic Gramians allow us to compute
reduced-order systems.

In this talk, we propose an extension of balanced truncation for model reduction of continuous time
polynomial control systems, whose dynamics are governed by

ẋ(t) = Ax(t) +

np∑

j=2

Hjx
⊗
j (t) +

np∑

j=1

m∑

k=1

Nk
j x

⊗
j (t)uk(t) +Bu(t),

y(t) = Cx(t), x(0) = 0,

where np is the degree of the polynomial part of the system, x(t) ∈ Rn, x⊗j (t) = x(t)⊗ · · · ⊗ x(t)︸ ︷︷ ︸
j-times

,

A ∈ Rn×n, Hj , N
k
j ∈ Rn×nj , B ∈ Rn×m and C ∈ Rp×n. This class of systems has a variety of

applications in science and engineering, e.g., neuronal dynamics [4]. By following [3], we propose
algebraic Gramians for polynomial systems based on the underlying Volterra series of those systems
and their Hilbert adjoint. We then show their relations with a certain type of generalized polynomial
Lyapunov equations. Furthermore, we present how these algebraic Gramians and energy functionals
relate to each other. This allows us to find those states that are hard to control and hard to observe via
an appropriate transformation based on the proposed Gramians. Truncating such states yields reduced-
order systems. The efficiency of the reduced systems obtained by the proposed method is demonstrated
by means of various semi-discretized nonlinear partial differential equations and compared with the
most commonly used model reduction techniques, proper orthogonal decomposition.
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The computational demand of PDE constrained optimal control or inverse problems easily exceeds ex-
isting resources, if standard approximation methods are employed for the underlying forward problem.
Model order reduction (MOR) methods for parameterized partial differential equation(pPDEs), such
as the Reduced Basis (RB) method, allow to quickly explore the solution space by a decomposition of
the computation into an expensive offline and a cheap online part. If employed as a surrogate approxi-
mation for the forward problem, MOR methods have the potential to significantly speed up outer-loop
algorithms, or even allow to study hitherto off-limits large scale problems. However, standard global
(in a spatial as well as parametric sense) MOR methods that construct a single reduced space for the
whole parameter range of the underlying pPDE may still induce a tremendous offline computational
burden for multi-scale or large scale problems.
A possible remedy is to consider localized methods, both in parameter- as well as physical space. In
the context of the latter, localized RB methods combine ideas from domain decomposition and RB
methods to obtain a (parameter) global surrogate model spanned by spatially localized reduced spaces.
As a particular example, the localized RB multi-scale method equipped with error control w.r.t. the
true solution allows to adaptively enrich these local reduced spaces [2]. In the context of optimization
or inverse problems, such adaptive localized MOR methods have the potential to evolve the reduced
model during the outer-loop algorithm (see also [3, 1]).
In this contribution, we demonstrate recent advances of localized RB methods in the context of PDE
constrained optimization and inverse problems. In particular, we will present localized true error esti-
mates for the optimization problem, including a posteriori error estimates for the objective functional
and the optimal parameters or parameter functions, and numerical experiments to demonstrate the
potential of our approach.
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Reduced Bases and Low-Rank Methods
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In this talk, we consider the connections and differences between reduced basis methods and SVD-
based low-rank approximations for solutions of parameter-dependent elliptic PDEs, and we discuss
some recent findings concerning the respective approximability properties of solutions that determine
the potential performance of these methods.
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In Variational Monte Carlo we aim at optimizing a function from a hypothesis space with respect to
an objective functional. But instead of using the, possibly unknown, exact objective functional we rely
on a sample based empirical objective functional. This idea is closely related to the risk minimization
in statistical learning. For the optimization we only require the gradients at the sample points to be
computable. For this empirical optimization problem, we can show convergence in probability, i.e. that
error estimates hold with high probability, given a sufficient amount of samples. The analysis is carried
out in the framwork introduced Cucker and Smale [1].

For the hypothesis space we use tensors in the Hierarchical Tucker format, introduced by Professor
Dr. Wolfgang Hackbusch et al [2] and its special case the Tensor Train (TT) format [3]. Both formats
have proven to be very efficient for approximating very high dimensional problems. For example these
multi-linear parametrization can be applied to solve high-dimensional PDE in a variational framework,
restricted to tensor low rank classes. However for non-linear or more complex problems this direct
approach becomes very difficult due to required tensor product approximations of the operators. The
proposed variational Monte Carlo approach on the other hand can be carried out realtivly easy for
parametric problems in uncertainty quantification and can be formally extended to approximate the
meta-stable eigenfunctions of the corresponding Backward Kolmogorov operator by numerical approx-
imation of the transfer operator (also know as Koopman operator) and vice versa the Fokker Planck
operator.

This is joint work with F. Nüske and F. Noé from FU Berlin.
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Tensor Empirical Interpolation Method for multivariate functions
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Several problems of practical interest in physical, chemical, biological or mathematical applications
naturally lead to multivariate approximation problems. Such problems are often composed of multiple
simpler systems and models. Therefore, in order to better understand the behavior and properties of
multi-dimensional models, tensor-based modeling is a natural choice in these cases. We thus derive
a Tensor Empirical Interpolation Method (TEIM) for multivariate functions (the case of bivariate
functions have already been treated in [1]). This method relies on the classical Empirical Interpolation
Method (EIM) where the greedy procedure is used to compute the interpolation points and the basis
functions "direction-by-direction". The algorithm returns interpolation functions that directly fulfill
the Lagrange property. The TEIM provides an approximate representation of a given function f in
separate form. As any tensor decomposition procedure, the TEIM leads to a computational complexity
for highly multivariate functions. We then propose two strategies to reduce the complexity due to
the use of the TEIM. The first one is the mixed EIM-SVD tensor decomposition. It consists in
applying the Singular Value Decomposition (SVD) with low-rank truncation to the separate form of f
resulting from the TEIM decomposition. As a second strategy, we develop an interpolation method by
sparse collocation point set. This method is also based on EIM greedy procedure and it returns basis
functions that satisfy the Lagrange property. Error estimates of the developed TEIM, the truncated
SVD decomposition and the sparse collocation interpolation are derived. To validate the performance
of the proposed algorithms, several numerical experiments are proposed. We apply the algorithms first
to a regular bivariate function then to a non regular bivariate function and finally to a multivariate
regular function (5D function). Numerical experiments confirm that each of the three methods has a
very good behavior in terms of stability and accuracy.
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Space–time least-squares Petrov–Galerkin projection for
nonlinear model reduction
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Reduced-order models (ROMs) of nonlinear dynamical systems are typically characterized by low
spatial dimensionality but high temporal dimensionality : the spatial dimensionality (i.e., number
of degrees of freedom) is reduced via projection, but the temporal dimensionality (i.e., number
of time instances) remains unchanged from the high-fidelity model. This limits the realizable
computational savings of such ROMs, especially for problems requiring long-time integration.
Several attempts have been made to address this temporal-complexity bottleneck. At the two
previous MoRePaS meetings, we presented a ‘forecasting’ approach that employs time-domain
data to produce online forecasts of the ROM solution via gappy POD. We proposed to use
these forecasts (1) as initial guesses for the Newton solver at each time instance [2], or (2) as
a coarse propagator for time-parallel methods [1]. While both approaches reduce the compu-
tational cost incurred by time integration, neither directly reduces the temporal dimension of
the ROM. Alternatively, space–time reduced-basis methods have been proposed [4, 5]. While
these pioneering approaches reduce the temporal dimension and are equipped with error bounds
that grow only linearly in time, they exhibit several drawbacks. For example, they require a
space–time variational interpretation of the high-fidelity model, they provide no mechanism for
hyper-reduction, and they compute only one space–time basis vector per training simulation.
To this end, we present a space-time least-squares Petrov–Galerkin (ST-LSPG) method [3] that
(1) reduces both the spatial and temporal dimensions of the dynamical system; (2) is equipped
with error bounds that grow sub-quadratically in time; (3) is applicable to general nonlinear
dynamical-system models; (4) is equipped with hyper-reduction; and (5) can extract multiple
space–time basis vectors from each training simulation via tensor decomposition.
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Stabilised finite volume POD-Galerkin ROMs of the incompressible
Navier-Stokes equations.

G. Stabile and G. Rozza

SISSA, International School for Advanced Studies, Mathematics Area,
mathLab, Via Bonomea 265, 34136 Trieste, Italy

It is crucial in the development of Reduced Order Methods (ROMs) to preserve the stability properties
of the original system. It is well known that Redeuced Order Methods Techniques for the incom-
pressible Stokes and Navier-Stokes equations, obtained with Galerkin projection methods, are prone
to several instability issues. In this talk the attention will be devoted to the treatment of inf-sup pres-
sure instabilities due to spurious pressure modes when the equivalent inf-sup condition for the reduced
system is not fulfilled. In particular we will focus the attention on ROMs generated starting from
full order finite volume approximations [1, 3, 2]. Although this discretisation technique is particularly
widespread for industrial applications, with respect to the finite element method, it has received less
attention in the reduced order modelling community. We will present and compare two different sta-
bilisation approaches based on a supremizer stabilisation technique and on a pressure Poisson equation
approach. Moreover, some relevant challenges concerning the use of the finite volume method, in view
of more advanced applications of ROMs in several industrial contexts, are presented and discussed.
The efficiency of the proposed method is verified with benchmark classic test cases.
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Let H be some Hilbert space with induced norm ‖·‖. We consider the problem of approximating
the solutions of a parametric partial differential equation (PPDE), say M = {h : PDE(h, θ) =
0 for some θ ∈ Θ}, within a N -dimensional subspace VN ⊂ H. We consider a PPDE whose weak
formulation takes the following form:

find h ∈ H such that aθ(h,h
′) = bθ(h

′) for h′ ∈ H,

where aθ(·, ·) and bθ(·) are respectively some bilinear and linear forms.
The orthogonal projection (with respect to ‖·‖) of the elements of M onto VN being usually too
computationally-demanding, one standard option is to resort to Galerkin projection:

find h ∈ VN such that aθ(h,h
′) = bθ(h

′) for h′ ∈ VN .

The “quality” of the Galerkin approximation (its closeness to the true orthogonal projection) depends
on the “conditioning” of the operator aθ(·, ·) and bθ(·) (e.g., via their coercivity and continuity constants
[2]). In some difficult case, Galerkin projection may thus leads to poor approximation results. In our
work, we propose a simple way to improve Galerkin projections.
We consider the setup where VN corresponds to the N -dimensional subspace computed via a reduced-
basis method [2]. Now, while computing the subspace VN , this type of methodology also generates a
sequence of subspaces {Vi}Ni=0 and some positive scalars {εi}Ni=0 such that

V0 ⊂ V1 ⊂ . . . ⊂ VN ,

and

sup
h∈M

dist(h, Vi) ≤ εi.

The last inequality provides some information aboutM since it implies that the latter is included in
the intersection of N (degenerate) ellipsoids, i.e.,M⊆ ∩Ni=0{h : suph∈M dist(h, Vi) ≤ εi}.
In our work, we propose a new suboptimal projection method exploiting the fact thatM is included
in the intersection of a set of known ellipsoids. The proposed methodology boils down to the standard
Galerkin projection when one single ellipsoid is considered. We provide both theoretical and empirical
results showing that the proposed methodology clearly outperforms the standard Galerkin projection
in some situations. Our derivations are based on the recent work by Binev et al. [1]
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Motivated by high-dimensional kinetic transport equations we consider in this talk stable variational
formulations and model reduction techniques for possibly time-dependent transport equations.
Kinetic equations describe densities in phase space consisting of independent space, time, and velocity
variables. To tackle the high-dimensionality we employ the Reduced Basis-Hierarchical Model Reduc-
tion approach where we use a problem-adapted basis in the velocity variable to arrive at a hyperbolic
system in the space-time domain [1].
In this context, stable discretizations and efficient error estimators are desirable both for the construc-
tion of the reduced basis and the validation of reduced solutions.
To derive such stable variational formulations for general transport equations we use, similar to [2], an
ultraweak approach to find an L2 approximation of the solution. We introduce new pairs of optimally
stable trial and test spaces: By first choosing a suitable test space and then defining the trial space by
the application of the adjoint operator, we obtain optimally stable spaces with an inf-sup constant of
one in the continuous as well as in the discrete case.
The setting allows for an easy implementation of the solution procedure and is especially beneficial
in the context of model reduction for parametrized transport equations: We apply the Reduced Basis
method to parametrized equations within this framework. In contrast to previous works, due to the
optimally inf-sup-stable setting we do not need any further stabilization for the reduced spaces. Hence,
also the reduced models can be constructed easily and efficiently.
We exemplify the approach by presenting numerical results for full order and reduced order models
for the first order transport equation in space or space and time and compare our new framework to
existing works [2, 3].
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Due to the growth of renewable energy, the future perspective of energy markets is seen in short-term
trading markets. In this talk, we consider the intraday trading of electricity and derive a Hamilton-
Jacobi-Bellman (HJB) equation for this setting, extending the work of [1]. A recent change in regularity
constraints even allows that the participants of the intraday market can trade every 15 minutes instead
of every hour.
Our aim is to find an optimal trading strategy within 15 minutes/an hour using the most recent
information of the market. As solving the HJB equation is a nonlinear and nonsmooth problem, fine
discretizations, that are needed, can resolve in long computation times. Therefore, we use the reduced
basis method (RBM) [2, 3] to derive a reduced model.
The RBM is a well-known technique to efficiently reduce the numerical efforts for many parametrized
problems. We introduce the parametric formulation of our HJB equation, in which the parameter is
the incoming data of the market and analyze the reducability of this problem. We comment on the (to
our knowledge) only existing approach for this problem by [4] and provide numerical investigations for
our method.
This is joint work with N. von Luckner and R. Kiesel, Chair for Energy Trading and Finance, University
Duisburg-Essen.

References

[1] R. Aïd, P. Gruet, and H. Pham. An optimal trading problem in intraday electricity markets.
Mathematics and Financial Economics, 10(1):49–85, 2016.

[2] J. S. Hesthaven, G. Rozza, and B. Stamm. Certified reduced basis methods for parametrized partial
differential equations. Springer, Cham, 2016.

[3] A. Quarteroni, A. Manzoni, and F. Negri. Reduced basis methods for partial differential equations.
Springer, Cham, 2016.

[4] S. Steck and K. Urban. A reduced basis method for the hamilton-jacobi-bellman equation within
the european union emission trading scheme. Accepted in Journal of Mathematics in Industry,
2017.

81



Optimal Kernel-Based Dynamic Mode Decomposition

P. Héas1 and C. Herzet1

1INRIA Centre Rennes - Bretagne Atlantique, campus universitaire de Beaulieu, 35042
Rennes, France

This work is concerned with the approximation of high-dimensional dynamical systems of the form:
{
xt(θ) = ft(xt−1(θ)), t = 1, · · · , T,
x1(θ) = θ,

(1)

where xt ∈ Rp is the state variable, ft : Rp → Rp, and θ ∈ Rp denotes an initial condition. We consider
a data-driven approach relying on representative trajectories {xt(θi)}Tt=1, i = 1, ..., N , obtained by
running (1) for N different initial conditions {θi}Ni=1 in a given set Θ. Assume the knowledge of a
vector-valued function Ψ ∈ (L2(Rp))n with p ≤ n, admitting the inverse Ψ−1, such that its image is an
invariant vector space of the Koopman operator. Then, it can be shown that a finite approximation of
the Koopman operator of rank k ≤ p leads to approximating xt(θ) in (1) by

x̃t(θ) = Ψ−1(
k∑

i=1

λt−1
i ξᵀi Ψ(θ)ζi), (2)

where ξi ∈ Cn and ζi ∈ Cn are the left and right eigen-vectors associated to the eigen-value λi ∈ C of
an (assumed diagonalisable) matrix

A?
k ∈ argmin

A:rank(A)≤k

T,N∑

t=2,i=1

‖Ψ(xt(θi))−AΨ(xt−1(θi))‖22. (3)

Kernel-based dynamic mode decomposition (k-DMD) is a state-of-the-art algorithm estimating the ξi’s,
ζi’s and λi’s in reduced-model (2) from the representative trajectories and then computing x̃t(θ) [3]. It
presents an advantageous complexity scaling linearly in p and independent of n, which is crucial in the
case p� n . However, k-DMD relies on crude approximations and on restrictive assumptions, making
this algorithm generally sub-optimal.

The purpose of this work is to propose an upgraded version of the k-DMD algorithm, able to compute
reduced model (2) exactly for any θ ∈ Θ, with a similar complexity. The proposed algorithm relies on
an optimal solution of (3) given in [1] and on kernel-based computation. Details on this work can be
found in [2].
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We study reduced basis methods derived from stochastic Galerkin finite element discretizations of pa-
rametrized elliptic boundary value problems with random data. The approach is based on a Galerkin
projection of a spatial-stochastic weak solution onto a subspace spanned by spatial-stochastic reduced
basis functions, which is similar to the concept of space-time reduced basis methods [3]. The idea of
stochastic Galerkin reduced basis methods was posed in [4, section 8.2.1] and formulated for linear
dynamical systems in [2].
Stochastic Galerkin reduced basis methods are online-efficient in the sense that the cost of estimating
the expected value of some output functional does not depend on the number of stochastic Galerkin
finite element degrees of freedom. Moreover, the statistical estimation requires only a single solution
of the reduced basis model for any given deterministic parameter value. In contrast, conventional
sampling-based reduced basis methods require multiple evaluations of a reduced basis model to estimate
output statistics [1].
The reduced basis theory equips stochastic Galerkin reduced basis methods with computable a pos-
teriori error bounds regarding the expectation of parameter-dependent linear outputs. It is assumed
that the underlying stochastic Galerkin finite element discretization is sufficiently accurate. This is
similar to conventional sampling-based reduced basis methods, which require that the underlying finite
element discretizations are sufficiently accurate and that sufficiently many stochastic samples are used
in the online phase.
We illustrate the efficiency and accuracy of our approach with numerical tests for a reaction-diffusion
problem, where the reaction coefficient acts as a deterministic parameter and a Karhunen-Loève de-
composed random diffusion field acts as random data. The results show that a parameter-dependent
statistical estimation with a stochastic Galerkin reduced basis method can be much more efficient com-
pared to a Monte Carlo reduced basis method, because the former does not suffer from the overhead
imposed by computing random samples of the reduced basis solution in the online phase.
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We study linear descriptor systems described by DAE's (di�erential algebraic equations) characterized
by Σ : {Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) where E,A ∈ Cn×n,B ∈ Cn×m,C ∈ Cp×n, x ∈ Cn,
u ∈ Cm and y ∈ Cp. The transfer function H(s) = C(sE−A)−1B includes a strictly proper part, i.e.
H̃(s) and also a polynomial part, i.e. H(s) = H̃(s) +

∑η−1
`=0 c`s

`. Here, the dimension of Σ is n ∈ N
while the index of Σ is denoted with η ∈ N.
The Loewner framework, �rst introduced in [3], is an e�ective data-driven model reduction method,
that constructs reduced order models for which the transfer function matches that of the original system
at selected interpolation points in the frequency domain. Directly applying this method to systems
with polynomial transfer function will yield a large approximation error in the high frequency band.
This is due to the mismatch between the polynomial part of the original system's transfer function
and of the reduced system's transfer function.
To remedy this mismatch, we propose the following procedure; start by constructing a raw Loewner
model ΣL of dimension N > n based on sampled data composed of sample points and values
{(s,H(s))|s = jωk, k = 1, 2N}. We decompose the system ΣL into a strictly proper and a poly-
nomial part, by means of the ADTF algorithms in [2]. The estimated polynomial coe�cients are
denoted with c̃`, for ` = 1, η.
Next, construct a Loewner model Σ̃L of dimension N based on the original data from which we
subtract the polynomial part, i.e. {(s,H(s) −∑η−1

`=0 c̃`s
`)|s = jωk, k = 1, 2N}. Reduce the model

Σ̃L (by projection) to a much smaller model Σ̃r
L of dimension r � N . This latter system will have a

strictly proper transfer function. Finally, reattach the polynomial part given by {c̃`|` = 1, η} to Σ̃r
L

and obtain the �nal Loewner model denoted with Σ̂L. This system will capture the behavior of the
original system Σ both for low and high frequency ranges. The proposed procedure is tested for several
index 2 or 3 problems from the literature, i.e.

1. The constrained damped mass-spring system (of index 3) from [4];

2. The semidiscrete Oseen equatons (of index 2) from [1];

3. The �rst MNA system (of index 3) from the SLICOT benchmark examples in http://slicot.

org/20-site/126-benchmark-examples-for-model-reduction.
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We consider a parametrized obstacle problem driven by a nonlocal diffusion operator, which, in a
special case, reduces to a fractional Laplace operator. By means of the nonlocal vector calculus [1] and
a Lagrange multiplier approach we cast the problem in a variational saddle point form. A regularity
study for the nonlocal problem is conducted and a higher regularity of the Lagrange multiplier is
proven.
The lack of sparsity of the corresponding discrete problem increases the computational cost of solving
it. To reduce the computational complexity we apply the reduced basis method (RBM) to the nonlocal
model. To certify the method and provide a reliable estimate of the approximation error, a posteriori
estimators for the solution and Lagrange multiplier are derived. Here we can generalize existing results
from the local setting [2]. Numerical results are provided to illustrate the theoretical findings.
Furthermore, an extension of the reduced basis method to variational inequalities parametrized by
random input data is also presented. Here, we incorporate the reduced basis approach to speed-up the
computational procedure and compare it with some existing stochastic approximation methods.
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The numerical solution of parameter identification problems in a partial differential equation (PDE)
setting from (noisy) measurements usually requires numerous amounts of forward solutions of the re-
spective PDE. One way to speed up the solution process therefore is to reduce the computational time
of the forward solution, e.g. via the reduced basis method.

The reduced basis method is a model order reduction technique which constructs a low-dimensional
subspace of the solution space. Galerkin projection onto that space allows for an approximative
solution. An efficient offline/online decomposition enables the rapid computation of the approximative
solution for many different parameters.

This talk will focus on the problem of magnet resonance electrical impedance tomography (MREIT),
where the main objective is the acceleration of the well-known Harmonic Bz Algorithm [2] using
the adaptive reduced basis framework developed in [1] that is able to handle very high-dimensional
parameter spaces. The general idea of the framework is to adaptively construct a small, problem-
oriented reduced basis space instead of constructing a global reduced basis space like it is usually the
case in reduced basis methods. This will be done in an iterative procedure: the Harmonic Bz Algorithm
is projected onto the current reduced basis space and iterated until certain termination criteria are
reached. The resulting parameter then is utilized to enrich the reduced basis space and therefore fit it
to the given problem. This process is repeated until an iterate is accepted as the solution of the inverse
problem. Numerical results will demonstrate the usefulness of the approach.
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The field of Geosciences aims at obtaining an accurate understanding of the spatial distribution of the
earth’s subsurface properties and of the involved physical processes to provide meaningful predictions
concerning a sustainable use of the subsurface as a valuable resource. Most of the geoscientific applica-
tions face the challenge of how to address high-dimensional problems. The high-dimensional character
is caused by a complex coupling of different physics as, for instance, heat transport, chemical trans-
port and mechanical interactions and by the highly heterogeneous character of the earth’s subsurface.
Additionally, we face the problem of limited access resulting in data associated with high uncertainties.
To overcome or address this problem it is obviously necessary to perform uncertainty quantifications,
which is often prohibitively expansive using the standard finite element method. Therefore, we are
presenting the reduced basis (RB) method, being a model order reduction (MOR) technique, that
constructs low-order approximations to, for instance, the finite element (FE) space. We use the RB
method to address this computationally challenging simulations because this method significantly
reduces the degrees of freedom. The RB method is based on a decomposable implementation of an
offline and online stage. This allows performing all the expensive pre-computations beforehand to
get real-time results during the online stage, which can be, for instance, directly used during field
measurements. Generally, the RB approach is most beneficial in the many-query and real-time context
[3],[2]. We will illustrate the advantages of the RB method for the field of Geosciences through a Darcy
flow problem, which emphasizes the benefits of parabolic partial differential equations. We will provide
a quality evaluation of the approximations and we will compare the runtimes for both the FE and the
RB simulations. Furthermore, we are going to highlight the advantages of this method for repetitive
simulations by showing the speed-up for the RB solution in contrast to the FE solution. Also, we will
demonstrate how the method can be used in repetitive forward simulations as, for instances, parameter
studies, by taking advantage of the in our example coupled MOOSE [4] and Dakota framework [1].
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During the last decades, Model Order Reduction (MOR) has attracted much research attention and
many different techniques have been proposed. When we conduct parametric studies such as opti-
mization and uncertainty quantification, it is desired to preserve the parameters in the reduced-order
model (ROM). Therefore, many Parametric MOR (PMOR) methods have been developed. In this
talk, we consider an alternative approach, which uses pre-computed nonparametric ROMs at sampled
parameters p1, . . . , pk to build a ROM at a parameter value of interest, say p∗. The motivation of this
study is twofold. First, in the most general case, the original large-scale Full-Order Model (FOM) may
be unknown and the ROMs corresponding to samples of parameters can be built by different types
of MOR methods. An example is the Loewner Framework [2], which is a data-driven method that
constructs a ROM completely from the samples and does not assume the availability of the FOM.
Second, the popular projection-based PMOR methods can suffer from a possibly large dimension of
the ROM, especially when the dimension of the parameter space is large.

Several research efforts have been directed towards the interpolation of nonparametric ROMs. In [3],
the authors pointed out that interpolating ROMs directly performs poorly in general, and proposed
a method that “reprojects” all ROMs onto a common subspace. However, this method applies only
to projection-based MOR methods and requires that the bases used to build all ROMs have been
stored, which is often not the case. In [1], a method that builds a ROM at p∗ by interpolating the
pre-computed ROMs (at sampled parameters p1, . . . , pk) on a manifold is proposed. In our numerical
experiments, the method works when the order of the ROM is low. However, we often fail to increase
the accuracy of the ROM by using a higher order because the ROM can diverge.

In this talk, we will show that the accuracy of ROM interpolation depends heavily on the realization
of the systems. As an extreme example, interpolating two ROMs built by the Loewner Framework
is equivalent to interpolating frequency response functions, which leads to fixed poles. Therefore,
instead of a moving peak, this interpolation may result in wax and wane of two peaks, the positions of
which depend on the choice of the interpolation points, which makes no physical sense. The method
proposed first converts all ROMs, which may be built by different algorithms and of different properties,
into a modified “modal” realization. Interpolating the modified modal realization is equivalent to
interpolating the positions and amplitudes of all poles, respectively, and therefore, has a clear physical
meaning and gives accurate parametric ROMs. Another merit of the proposed method is that the order
of the parametric ROM does not increase with the dimension of the parameter space. It can be used
as a post-processing method for any MOR method to build ROMs that can be readily interpolated.
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In recent years, model order reduction for nonlinear dynamic systems has gained a lot of attention due
to the existence of many applications (e.g. aerospace, automotive, biomechanical, circuit simulation,
etc.), where large-scale systems of nonlinear di�erential(-algebraic) equations arise. The most general
nonlinear model reduction approach is given by the simulation-based Proper Orthogonal Decomposi-
tion (POD), along with a subsequent hyperreduction with e.g. the Discrete Empirical Interpolation
Method (DEIM). For special, rather weakly nonlinear system classes � such as bilinear and quadratic
bilinear systems � model reduction techniques have been developed in the past years [1, 5, 2, 4, 3].
The drive for the extension and generalization of many well-known linear system-theoretic concepts
(e.g. transfer functions, Gramians, H2-norm) and reduction methods (e.g. balanced truncation, Krylov
subspaces) to these special system classes has been the prominent Volterra theory [7], which allows to
represent a nonlinear system by an in�nite series of coupled subsystems and multivariate kernels.

In this talk, new insights and perspectives concerning the system theory (i.e. Volterra representa-
tion, impulse response, eigenfunctions) and model order reduction (specially through Krylov sub-
spaces/Moment Matching) for nonlinear systems will be presented and discussed. Initial attempts
regarding bilinear systems [6] as well as current developments and �ndings towards system-theoretic
and simulation-free nonlinear model reduction approaches by Moment Matching will be exposed.
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Reduced-order models (ROMs) of nonlinear dynamical systems are essential for enabling high-fidelity
non linear CFD design optimization or aeroelastic investigation. In fluid mechanics, the wide variety
of ROMs reported in literature shares the aim of reducing the dimensionality of dynamical systems
by performing a projection of the governing equations. Unfortunately, the performance of available
ROMs are still unsatisfactory in terms of real-life applications. For instance, parameter changes imply
projection basis interpolation or several rebuilds of the ROM that could result in a lack of robustness
or efficiency.
Moreover, in aeroelastic investigations, a wide range of parameters has to be taken into account re-
sulting in a time performance issue. Nevertheless, for such practical fluid mechanics investigations the
results of interest are limited to the aerodynamics loads, therefore it would be sufficient to compute
only the aerodynamic field close to the wall.
To this end, the approach used in the present work relies to the classical Galerkin projection onto a
basis constructed via the proper orthogonal decomposition (POD). The discrete empirical interpolation
method (DEIM) is adopted in order to deal with the compressible Navier-Stokes non-linearities [3].
In particular, we propose to perform the POD and the on-line time integration on a restricted spatial
domain which contains the wall boundary points used to compute the aerodynamics loads. In line with
the concept of Sampled Mesh introduced by Carlberg et al.[2], such a sub-mesh plays a crucial role
in the interface between the reduced and the full order model. In this work, we deal with the ROM
sensitivity to the sub-mesh dimension and to the boundary conditions implementation.
Numerical tests have been carried out to evaluate the performance of the model. First, we validate the
classical POD-DEIM technique for a time dependent flow around a cylinder. Then, we apply the sub-
mesh technique to two time dependent problems (i.e. slightly compressible flow around a NACA-0012
airfoil with high incidence and a complete 3D realistic wing configuration). Numerical results show
that the proposed technique enables additional computational savings without penalizing the accuracy.
Finally, on the basis of the achieved result, we outline how to extend the proposed technique to a
parametric and an aeroelastic problem [1].

Figure 1: An example of sub-
mesh in red, and the related
DEIM points in blue.
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The modeling of many applications, like mechanical systems and �uid dynamics, results in linear
time-invariant continuous-time descriptor systems

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

with E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m. Additionally, the descriptor matrix E is
assumed to be singular. The aim of model reduction is to approximate the original system (1) by a
surrogate model of order r � n. For a system (1) with transfer function G, the Hankel semi-norm is
de�ned as

‖G‖H = sup
u−∈L2

‖y+‖L2
‖u−‖L2

, (2)

where u− are the past inputs and y+ the future outputs of the system.
The Hankel-norm approximation method is a model reduction approach that minimizes the approxi-
mation error in the Hankel semi-norm (2). Based on the work of Adamjan, Arov, and Krein, a mode
reduction method �nding a reduced model with minimal error measured in the Hankel semi-norm for
the standard system case E = In was developed by Glover in [2]. One approach for the generalization
of the Hankel-norm approximation to the case of descriptor systems (1) can be found in [1]. Therein,
the Weierstrass canonical form of the matrix pencil λE − A is computed explicitly and transforma-
tion formulas, based on this, are given. This method is problematic due to the numerically unstable
and costly computation of the Weierstrass canonical form. This comes already into account for small
systems and makes the approach unapplicable for the large-scale sparse system case.
Using the generalized balanced truncation method [3], a much more e�cient and numerically stable
method can be formulated. Using di�erent techniques, the new approach can also be applied to the
case of large-scale sparse systems; see [4]. We will demonstrate this using some examples of large-scale
descriptor systems from the literature.
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We present a reduced-order model approximating the BGK model in order to decrease the computa-
tional cost of the simulations. The BGK model describes the dynamic of a rarefied gaz flow, and the
density distribution function f of the gaz follows :

∂f

∂t
(x, ξ, t) + ξ · ∇xf(x, ξ, t) =

Mf (x, ξ, t)− f(x, ξ, t)

τ
(1)

In the reduced-order model, the density distribution function is approximated in velocity space by a
small number of basis functions Φn(ξ) which reduce significantly the degrees of freedom :

f̃(x, ξ, t) =
N∑

n=1

an(x, t)Φn(ξ) (2)

This basis functions Φn(ξ) are computed by Proper Orthogonal Decomposition and the reduced-order
model is obtained by Galerkin projection. The resulting system of partial differential equations is
hyperbolic by construction and an appropriate projection of the Maxwellian distribution function Mf

ensures the positivity of the approximate distribution function f̃ . The system of PDE is then solved
by an IMEX Runge-Kutta in time and a finite-volume scheme in space. The different test cases show
that we can reduce significantly the computational cost and have an accurate approximate solution.
Moreover, optimal transport is used to predict distribution function in velocity space and leads to even
better approximation.
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We consider the problem of extracting a parameterized reduced-order model from a set of measurements
of some underlying LTI system with (unknown) transfer function Ȟ(s;ϑ) ∈ CP×P , where s is the
Laplace variable and ϑ ∈ Θ ⊂ Rρ is a vector of external parameters. The model is constructed
using a data-driven approach starting from frequency response samples Ȟk,m = Ȟ(jωk;ϑm) at discrete
frequency sk = jωk and parameter values ϑm for k = 1, . . . , k̄ and m = 1, . . . , m̄.
We adopt a Generalized Sanathanan-Koerner (GSK) framework [3] by representing the model as

H(s;ϑ) =
N(s, ϑ)

D(s, ϑ)
=

∑n̄
n=0

∑¯̀

`=1Rn,` ξ`(ϑ)ϕn(s)
∑n̄

n=0

∑¯̀

`=1 rn,` ξ`(ϑ)ϕn(s)
, (1)

where Rn,` ∈ RP×P and rn,` ∈ R are the model coefficients, and where ϕn(s), ξ`(ϑ) are suitable
basis functions. In particular, we use partial fractions ϕn(s) = (s − qn)−1 associated to a set of
predermined stable poles qn (as in the well-known Vector Fitting scheme [2]) and tensor products of
Chebychev polynomials ξ`(ϑ) for frequency and parameter dependence, respectively. Model coefficients
are computed through a Sanathanan-Koerner iteration [3] by setting D0(jω, ϑ) = 1 and solving

min
∑

k,m

|Dµ−1(jωk, ϑm)|−1
∥∥Nµ(jωk, ϑm)− Dµ(jωk, ϑm) Ȟk,m

∥∥2

F
for µ = 1, 2, . . . (2)

Our main result is a sufficient condition and an associated algorithm for enforcing uniform stability of
the model H(s;ϑ) throughout the parameter domain ϑ ∈ Θ. This condition requires constraining the
model denominator D(s, ϑ) to be a Positive Real (PR) function (see [1] for the sketch of a proof).
Based on the model structure (1), the PR-ness of D(s, ϑ) is guaranteed when <{D(jω, ϑ)} ≥ 0, ∀ϑ ∈ Θ
and ∀ω ∈ R. This is achieved by an adaptive sampling process in the parameter space Θ. At GSK iter-
ation µ and for any given ϑ∗, the imaginary eigenvalues of the Hamiltonian matrix associated to a state-
space realization of Dµ−1 are used to determine the frequency bands where <{Dµ−1(jω, ϑ∗)} < 0, and
a first-order perturbation analysis of the non-imaginary Hamiltonian eigenvalues is used to determine
which directions need to be searched in the parameter space to find local minima of <{Dµ−1}. The re-
sult is an automatically determined set of discrete points (ωi, ϑi) where the constraint <{Dµ(jωi, ϑi)} >
0 is formulated and embedded in the GSK iteration (2). When the residual of (2) stabilizes, the model
poles pn(ϑ) (i.e., the zeros of D(s, ϑ)) result uniformly stable ∀ϑ ∈ Θ.
Several examples from Electronic Design Automation applications are provided, demonstrating the
robustness and the efficiency of proposed approach. For a preview of these examples, see [1].
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Numerical optimization methods are a popular means of improving concepts and designs, and are widely
used across many disciplines. Nonetheless, the optimization of complex and detailed �nite element (FE)
models, as typically encountered in the automotive industry, can easily become cumbersome due to the
large number of degrees of freedom of the FE discretization, and the large number of design parameters
involved [4].
Nonlinear model order reduction methods aim to reduce the computation times associated with each
simulation, and thus each evaluation of the objective function. We discuss particularities and challenges
of reduced-order model (ROM) assisted optimization for the design optimization of car body structures,
more speci�cally with respect to crashworthiness, noise and vibration requirements. We then make use
of a nonlinear model order reduction procedure based on the Proper Orthogonal Decomposition (POD)
snapshot method [6]. It is equipped with a hyper-reduction technique based on the Discrete Empirical
Interpolation Method (DEIM) [1, 3], as well as the Gauss-Newton with Approximated Tensors (GNAT)
[2], and the Energy-Conserving Sampling and Weighting (ECSW) methods [5]. The method is then
applied to an example problem. We discuss the occurring nonlinearities and analyse the accuracy and
resulting speed-ups of the ROM-based optimisation compared to the high-dimensional model. Results
indicate that signi�cant simulation speed-ups can be achieved and that reduced-order modelling can
be used to reduce the computation times of optimization studies for car body structures, although the
application to larger and more complex models still needs to be investigated in future studies.
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A fundamental robotics task is to plan collision-free motions for complex bodies from a start to a goal
position among a set of static and dynamic obstacles. This problem is well known in the literature as
motion planning (or the piano mover's problem). The complexity of the problem has motivated many
works in the �eld of robot path planning. One of the most popular algorithms is the Arti�cial Potential
Field technique (APF), [4]. This method de�nes an arti�cial potential �eld in the con�guration space
(C-space) that produces a robot path from a start to a goal position. This technique is very fast for
RT applications. However, the robot could be trapped in a deadlock (local minima of the potential
function). The solution of this problem lies in the use of harmonic functions in the generation of
the potential �eld, which satisfy the Laplace equation, [2]. Unfortunately, this technique requires a
numerical simulation in a discrete mesh, making useless for RT applications. In our previous work,
[3], [1], was presented for the �rst time, the Proper Generalized Decomposition method to solve the
motion planning problem. In that work, the PGD was designed just for static obstacles and computed
as a vademecum for all Start and goal combinations. This work demonstrates that the PGD could be
a solution for the motion planning problem. However, in a realistic scenario, it is necessary to take
into account more parameters like for instance, dynamic obstacles. The goal of the present paper is to
introduce a di�usion term into the Laplace equation in order to take into account dynamic obstacles
as an extra parameter. Both cases, isotropic and non-isotropic cases are taken into account in order
to generalize the solution.
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The demand for energy efficient technical products leads to an increased usage of lightweight compo-
nents. One way to realize lightweight components is to apply structural optimization and to optimize
the shape of the components for a particular load case, e.g. to minimize a displacement due to ex-
ternal forces. Shape optimizations in structural mechanics are usually done numerically based on the
Finite-Element method in an iterative optimization procedure where the design parameters of the opti-
mization problem describe the shape of the component. As a first step of this procedure the geometry
of the component is discretized according to the current design parameters. The equations of motion

Mẍ(t) +Dẋ(t) +Kx(t) = f(t), x(t) ∈ RN (1)

are then derived for the current discretized geometry. The cost function is evaluated and passed to
the optimization algorithm to derive new design parameters. This procedure is then repeated until the
optimization problem converges. However, this procedure shows some drawbacks. First, as complex
shaped components require fine discretizations, the number of degrees of freedom N can easily exceed
hundreds of thousands. Second, the equations of motion are only derived for a fixed discretization and
therefore for a fixed shape of the component. A parametric formulation of the equations of motion
for a variable shape does not exist. This means that the equations of motion have to be derived in
every iteration of the optimization procedure again including the Finite-Element method preprocessing.
Furthermore, it means that Parametric Model Order Reduction (PMOR), see [2], cannot be applied
directly as there is no parametric formulation of the equations of motion. It is indeed possible to use
Model Order Reduction for linear time-invariant systems. However, this is also not satisfying since it
still requires to apply the Finite-Element method and to perform the reduction in every iteration of
the optimization. This contribution introduces an approach where the components are modeled with
a variable discretization. This variable discretization allows to derive a parametric formulation of the
equations of motion for a variable shape. The parametric system matrices are derived in an affine
representation such that for example the parametric stiffness matrix becomes

K(p) = K0 +
k∑

i=1

wi(p)Ki, K(p) ∈ RN×N . (2)

The representation according to Eq. (2) allows then an efficient application of PMOR. Here, interpo-
latory methods from [1] are applied since they allow to match the parametric transfer function of the
reduced parametric system and its gradient to the transfer function of the original parametric sys-
tem which is advantageous in an optimization. The proposed combination of a variable discretization
and PMOR enables a significant speedup compared to conventional approaches. The approach is not
limited to academic examples, but will be presented for an industrial structural optimization problem.
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While high-�delity complex models are often used to model nuclear reactors, these models are extremely

expensive for parametric study applications. To reduce the computational burden of such large-scale

nonlinear systems, a Reduced Order Model (ROM) using Proper Orthogonal Decomposition (POD)

can be built. However, projection-based POD methods are code intrusive, which is a major limitation

when access to the governing equations is unattainable. Moreover, problems parametrized on high

dimensional spaces are prone to the curse of dimensionality. Nevertheless, POD can be applied in a

non-intrusive manner by building surrogate models for the POD coe�cients. Smolyak's sparse grids

can alleviate the curse of dimensionality. We propose the use of locally adaptive sparse grids to re�ne

the POD sampling space only around regions of high interest. This iterative algorithm exploits the

hierarchical nature of sparse grids to only add points from the next sparse grid level that are neighbours

to points identi�ed with errors above a certain threshold. We introduce an L2 norm error based measure

to guide the adaptive algorithm. The quality of exploring the parameter space is increased by adding

not only neighbouring points from the next level (children) but also all neighbouring points from the

previous level (parents). The algorithm has been tested on several analytical functions to determine

its robustness and performance. Subsequently, the algorithm was used to build a ROM model for a

reactor physics problem test. This problem was a �nite di�erence, 1D, two-group, neutron di�usion

problem parametrized by two input variables, corresponding to the positions of two control rods in

the reactor. The considered output was the neutron thermal �ux at 780 mesh points. The built ROM

was highly e�ective in reducing the online runtime while providing acceptable accuracy. Moreover, the

developed algorithm reduced the number of model evaluations in the o�ine phase by a factor of 25

compared to classical sparse grids sampling. Figure 1 shows the L2 norm error as result of testing the

ROM on 961 points that were not part of the sampling space. The POD sampled points generated by

the developed algorithm are also marked on the �gure.
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Figure 1: Map of the L2 norm error resulted from testing the ROM of the reactor physics problem on

961 points. The black crosses mark the sampled points generated by the developed algorithm.
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In the minimum cost operative planning of pressurized water supply networks the underlying model is
a Differential Algebraic Equation [1]. The structure of that equation depends on the topology of the
distribution network. If the network gets complicated a clustering is done manually. We use clustering
based model order reduction techniques as in [2] to create such clusters automatically. The methods
presented there are extended to create an edge projection matrix R as well as the node projection
matrix P which is defined as

Pki =

{
αki, π(k) = i (node k is in cluster i),
0, π(k) 6= i (node k is not in cluster i),

(1)

for a given clustering π. In the standard version of the model order reduction clustering algorithm all
the αki are 1. In order to create a consistent reduced network the projection matrix R has to come
from an edge clustering and

RTEP = Ê,

where E and Ê are the incidence matrix of the original and the reduced graph.
We will show how to compute such matrices and what properties they have. We furthermore compare
the manual clusters with the automatically generated ones.
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Rotating structures are widely used in industrial applications such as turbo-machinery, helicopter
blades and wind turbines. The design tendency to create more slender, more flexible and lighter struc-
tural components under greater excitations increases the nonlinear behaviour of these components.
Thus, the need to accurately predict the dynamic response of geometrically nonlinear structures be-
comes essential for the designer. Many researchers have studied the geometrically nonlinear reduced
order models for non rotating structures, geometrically nonlinear formulations of beam type finite
elements, the dynamic behaviour of rotating geometrically nonlinear beams and the classical geomet-
rically nonlinear finite element (FE) formulation that considers a nonlinear static equilibrium state
induced by the effect of rotation.

In the present work, as an extension to [3], an autonomous geometrically nonlinear reduced order
model for the study of dynamic solutions of complex rotating structures is developed. In opposition
to the classical FE formulation for geometrically nonlinear rotating structures that considers small lin-
ear vibrations around the static equilibrium, nonlinear vibrations around the pre-stressed equilibrium
are now considered. For that purpose, the linear normal modes are used as a reduced basis for the
construction of the reduced order model. The stiffness evaluation procedure method (STEP) [5] is
applied to compute the nonlinear forces induced by the displacements around the static equilibrium.
This approach enhances the classical linearised small perturbations hypothesis to the cases of large dis-
placements around the static pre-stressed equilibrium. Furthermore, a comparison between the steady
solution given by HHT-α [2] and the Harmonic Balance Method (HBM) [4] is carried out. The STEP
method has been integrated in frequency domain in order to increase the time performances of the
nonlinear HBM and avoid the time consuming Alternating Time-Frequency (AFT) technique [1] for
the computation of the nonlinear forces.
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Model Order Reduction (MOR) of systems of non-linear (parameterized) Hyperbolic Partial Differential
Equations (PDEs) is still an uncharted territory in the scientific community. Moving discontinuities
are representative features of this class of problems and pose a major hindrance to obtain effective
reduced-order model representations, since typically bases with high spatial frequency are needed to
accurately capture these moving discontinuities. We will discuss a MOR framework to efficiently cap-
ture the travelling dynamics of such systems. The motivation of this work is to enable the usage of
multi-phase hydraulic models, such as the Drift Flux Model (DFM) [2], in developing drilling automa-
tion strategies for real-time down-hole pressure management.

The DFM is a system of multiscale non-linear PDEs, whose convective subset is conditionally hyper-
bolic. Convection dominated problems, such as the DFM, admit solutions, which possess a diagonal
structure in space-time diagram and high solution variability. As a first step, we apply standard MOR
approaches [4] to obtain a reduced-order representation of the DFM for a representative multi-phase
shock tube test case. We capture the dynamics in an essentially non-oscillatory manner but we obtain a
small dimensionality reduction. Since the dimension of the reduced model is still too large, we develop
new techniques for deriving more efficient alternative reduced-order models for this class of problems.

We invoke the idea of the method of freezing [1] and combine it with non-linear reduced basis approxi-
mations [3] to develop an efficient reduced-order model representation, which we demonstrate for several
benchmark problems. These benchmark problems embody the challenges faced in the reduced-order
representation of the DFM. However, the existing MOR framework [3] lacks consideration of boundary
conditions and multiple fronts. The main novelty of this work is to mathematically incorporate bound-
ary conditions into the formalism of the method of freezing and then investigate their impact on the
MOR framework. We also demonstrate the necessity of establishing multiple co-moving frames. Fi-
nally, we present numerical experiments and discuss the efficacy of above mentioned approach in terms
of computational speed up and computational accuracy compared with standard numerical techniques.
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We consider a parametric linear time invariant dynamical systems represented in state-space form as

Eẋ(t) = A(p)x(t) +Bu(t), (1)

y(t) = Cx(t), (2)

where E,A(p) ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n. Here x(t) ∈ Rn denotes the state variable, while

u(t) ∈ Rm and y(t) ∈ Rl represent, respectively, the inputs and outputs of the system.

We assume that A(p) depends on k � n parameters p = (p1, p2, . . . , pk) such that we may write

A(p) = A0 + U diag(p1, p2, . . . , pk)V
T ,

where U, V ∈ Rn×k are given �xed matrices.

We propose an approach for approximating the full-order transfer function H(s; p) = C(sE−A(p))−1B
with a reduced-order model that retains the structure of parametric dependence and (typically) o�ers

uniformly high �delity across the full parameter range. Remarkably, the proposed reduction process

removes the need for parameter sampling and thus does not depend on identifying particular parameter

values of interest. Our approach is based on the classic Sherman-Morrison-Woodbury formula and

allows us to construct a parameterized reduced order model from transfer functions of four subsystems

that do not depend on parameters, allowing one to apply well-established model reduction techniques

for non-parametric systems. The overall process is well suited for computationally e�cient parameter

optimization and the study of important system properties.

One of the main applications of our approach is for damping optimization: we consider a vibrational

system described by
Mq̈(t) + (Cint + Cext)q̇(t) +Kq(t) = Ew(t),

z(t) = Hq(t),
(3)

where the mass matrix, M , and sti�ness matrix, K, are real, symmetric positive-de�nite matri-

ces of order n. Here, q(t) is a vector of displacements and rotations, while w(t) and z(t) repre-

sent, respectively, the inputs (typically viewed as potentially disruptive) and outputs of the system.

Damping in the structure is modeled as viscous damping determined by Cint + Cext where Cint and

Cext represent contributions from internal and external damping, respectively. Information regard-

ing damper geometry and positioning as well as the corresponding damping viscosities are encoded

in Cext = U diag (p1, p2, . . . , pk)U
T where U ∈ Rn×k determines the placement and geometry of the

external dampers.

The main problem is to determine the best damping matrix that is able to minimize in�uence of the

disturbances, w, on the output of the system z. We use a minimization criteria based on the H2

system norm. In realistic settings, damping optimization is a very demanding problem. We �nd that

the parametric model reduction approach described here o�ers a new tool with signi�cant advantages

for the e�cient optimization of damping in such problems.
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Over the past decade, reduced basis methods have emerged as a powerful tool to reduce the computa-
tional complexity of large-scale and parametric systems of partial differential equations. However, in
problems with strong advective terms, conventional model reduction methods do not generally preserve
the stability of the original system. Conservation laws, symmetries, and intrinsic structures are often
destroyed over the course of model reduction which result in a qualitatively wrong, and ultimately in
an unstable solution.
Recently, a considerable attention has been paid to preserving physical and geometric structures, in or-
der to recover stability in the reduced system. In the context of Lagrangian and Hamiltonian systems,
recent developments suggest constructing a reduced-order configuration space with approximated con-
servation laws [2, 3, 1]. This results in a physically meaningful reduced system and can help recover
stability in the reduced system. However, these methods are only suited for a standard inner product
on a Euclidean space and are not compatible with a more general inner product.
Weak formulations and inner-products defined on a Hilbert space are at the core of the error analysis
of many numerical methods for solving partial differential equations. Therefore, it is natural to seek
for model reduction methods that consider such features. Many works have been conducted to make
conventional model reduction techniques compatible with various norms defined on a Hilbert space
[4]. However, a model reduction method that simultaneously preserves the symplectic symmetry of
Hamiltonian systems is still unknown.
We have developed a model reduction technique that minimizes the projection error with respect to
some energy norm (weighted norm) while preserving the symplectic symmetry of the original system.
This is obtained by projecting the full order Hamiltonian system onto a generalized symplectic sub-
space. The choice of the symplectic subspace and the energy projection operator depends on the choice
of the energy norm. This allows the reduced system to be constructed with respect to the norms, most
appropriate to the problem. A natural extension of the greedy basis generation proposed in [2] is
developed for constructing a generalized symplectic reduced basis.
Numerical experiments show that the new method preserves the Hamiltonian over time. Also while
conventional model reduction methods with respect to energy norm do not yield a stable reduced
system, the new method preserves stability over long time-integration.
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We consider adaptive model order reduction using the Proper Orthogonal Decomposition (POD)
method combined with Discrete Empirical Interpolation method (DEIM ) for general nonlinear prob-
lems of the form

ẋ(t) = Ax(t) + g(x(t)) + B u(t),

y(t) = C x(t),

where, x(t) ∈ RN is the state vector; A,B,C are system matrices obtained after spatial discretization;
the function g(·) represents the nonlinear term. y(t) and u(t) are the output and input, respectively.

In [2], an adaptive scheme was proposed to increase the number of POD-DEIM basis vectors, if
the initial number of basis vectors is too small to produce an accurate reduced-order model (ROM).
In this work, we have extended the adaptive scheme to a two-way process, i.e., it can also adaptively
decrease the number of basis vectors, so as to obtain a ROM as small as possible for a given error
tolerance. Also, a simple heuristic strategy is proposed to avoid oscillation which may arise during the
adaptive process. Using the proposed scheme, the POD-DEIM basis can be adaptively adjusted in
order to derive a ROM with both su�cient accuracy and minimal reduced order. Furthermore, possible
instability of the ROM produced by the standard POD-DEIM can also be avoided with the adaptive
algorithm. In fact, the e�ciency of the adaptive process highly depends on e�cient error estimation
of the ROM. We propose a modi�ed error estimator based on the primal-dual error estimation in [2].
Here, instead of reducing the dual system using the projection matrix for the primal system as done in
[2], we use a Krylov-subspace method (GMRES) to estimate the solution to the dual system. Moreover,
the modi�ed reduced output, ȳ = C u− (û)Tdu rpr is introduced to get the proposed error estimator

∥∥∥yn+1 − ȳn+1
∥∥∥ ≤

(
S ‖(An)−T‖‖rn+1

du ‖+ ‖ûn+1
du ‖ |1− S|

)
‖rn+1

pr ‖,

where the superscript n refers to the n-th time step; S is an empirically determined constant; rpr, rdu
are the primal and dual system residuals, respectively, while ûdu is the estimated dual state vector,
obtained via GMRES. Unlike for linear systems [1], the second part of the error estimator involving
(ûn+1

du ) can not be completely removed. The error estimator has been tested for the benchmark examples
of a viscous Burger's equation and a �uidized bed crystallizer (FBC) model. It is seen that it o�ers
a tighter bound in comparison to the error estimator in [2]. The future work would be extending the
adaptive process to parametric systems.
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This study focuses on the analysis of the ability of uncertain linear time-invariant (LTI) systems to
be reduced. In deterministic LTI systems, the reducibility can be decided by the analysis of Han-
kel singular values [1]. These invariant quantities defined from the controllability and observability
gramians that are solutions of linear Lyapunov equations for controllability and observability, measure
how state variables are simultaneously controllable and observable. From energy view point, Hankel
singular values quantify the controllability and observability energies involved in the input/output
transfer of a system. Hence, it can be stated that the system is reducible if it possesses state variables
with small Hankel singular values which indicate the weak controllability and observability of the state
variables [1]. Although the determining of Hankel singular values and thus the reducibility analysis
in the deterministic case are relatively well mastered, they remain challenging issues in LTI uncertain
systems [2, 5]. This study is interested by the analysis of the reducibility of LTI systems with two
kinds of uncertain parameters namely random parameters defined by their probability density func-
tions and interval parameters. In this perspective, an hybrid approach is proposed to approximate
parameter-dependent Hankel singular values. It consists in a meta-model constructed from the mixing
of the Wiener-Haar and Chebychev polynomial expansions. The first one was proposed to deal with
propagation and quantification of random uncertainties [3] and have shown interesting efficiency in nu-
merous applications [4] while the second has shown a suitable accuracy in propagating and quantifying
interval uncertainties [6]. As a result, the proposed approach is shown to be suitable for the analysis of
the controllability and observability degrees and thus for the reducibility analysis of LTI systems with
hybrid parameter uncertainty. Moreover, the proposed approach has shown an interesting potential to
be an alternative to the prohibitive scanning/Monte Carlo method conventionally used.
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We present in this talk our work on model reduction for the computation of 3D magnetic field, as
part of the Hifimagnet project. The model involves a thermoelectric problem which has already been
reduced, and we want to benefit from it to be able to compute the magnetic field using the Biot-Savart
law.

In practice, we need to compute the electric potential from a non-linear thermoelectric problem. To
keep the computational cost reasonable, we use the well-known Empirical Interpolation Method (EIM)
[1, 3] within the Simultaneous EIM Reduced basis (SER) [2] algorithm.
From this, we implemented a strategy to use the reduced potential directly into the Biot-Savart law.
This allows, in the case of physical parameters, conductivity, current intensity, etc., to compute in real
time the magnetic field in a zone of interest, perform uncertainty quantification, sensitivity analysis or
optimization.
In the case of geometrical parameters, the nature of the Biot-Savart law implies to use the Discrete
variation of the Empirical Interpolation Method [4]. This method provides a way to recover an affine
decomposition from a potentially complex geometrical transformation. Although this method reduces
the time needed for the computation of the magnetic field, it does not allow to achieve real time com-
putation.

As an illustration, we present two applications from the Laboratoire National des Champs Magnétiques
Intenses (LNCMI): the geometrical optimization of a real magnet, with respect to the homogeneity
of the magnetic field, and the identification of cooling parameters to be as close as possible as the
experiments.
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In current medical practice, the risk estimation of vascular accidents in children with sickle cell disease1

is based on a threshold of the average velocity measured with Doppler ultrasound in the zone of the
carotid siphon. This threshold is based on statistical studies that involve strong assumptions and do
not take into account any sophisticated physical modeling. As a result, it is desirable to build finer
methods to run an accurate risk estimation, which are also more patient-specific.

We propose to build a new risk estimator by taking into account both the Doppler measurements
and the knowledge we have about the mathematical modeling of blood flows (a.k.a. hemodynamics)
based on classical mechanics equations. We will keep our attention on the carotid artery and base the
risk estimator upon a reconstruction of the blood flow with the Parametrized Background Data-Weak
approach ([1], [2]). The method makes use of a reduced basis and measurement information (Doppler
measurements in our case). The major challenge to face is the use of real Doppler measurements in
the PBDW scheme, due to the presence of noise and some artifacts intrinsic to the measures.

In summary, proceeding as was described above, we end up with an algorithm capable of take very
poor one-dimensional Doppler measurements (currently only noise-free ones) and then reconstruct a
3D velocity field over a realistic human carotid geometry, a first step to build a risk estimator of vas-
cular accident for kids with sickle cell disease.
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The Poisson-Boltzmann equation (PBE) is a nonlinear elliptic parametrized partial di�erential equation
that is ubiquitous in biomolecular modeling. It determines a dimensionless electrostatic potential
around a biomolecule immersed in an ionic solution [2]. For a monovalent electrolyte (i.e. a symmetric
1:1 ionic solution) it is given by

−~∇.(ε(x)~∇u(x)) + κ̄2(x) sinh(u(x)) =
4πe2

kBT

Nm∑

i=1

ziδ(x− xi) in Ω ∈ R3, (1)

u(x) = g(x) on ∂Ω, (2)

where ε(x) and k̄2(x) are discontinuous functions at the interface between the charged biomolecule
and the solvent, respectively. δ(x − xi) is the Dirac delta distribution at point xi. In this study, we
treat the PBE as an interface problem by employing the recently developed range-separated tensor
format as a solution decomposition technique [1]. This is aimed at separating e�ciently the singu-
lar part of the solution, which is associated with δ(x − xi), from the regular (or smooth) part. It
avoids building numerical approximations to the highly singular part because its analytical solution, in
the form of us(x) = α

∑Nm
i=1 zi/|x−xi| exists, hence increasing the overall accuracy of the PBE solution.

On the other hand, numerical computation of (1) yields a high-�delity full order model (FOM) with
dimension of O(105) ∼ O(106), which is computationally expensive to solve on modern computer
architectures for parameters with varying values, for example, the ionic strength, I ∈ k̄2(x). Reduced
basis methods are able to circumvent this issue by constructing a highly accurate yet small-sized
reduced order model (ROM) which inherits all of the parametric properties of the original FOM [3].
This greatly reduces the computational complexity of the system, thereby enabling fast simulations
in a many-query context. We show numerical results where the RBM reduces the model order by a
factor of approximately 350, 000 and computational time by 7, 000 at an accuracy of O(10−8). This
shows the potential of the RBM to be incorporated in the available software packages, for example,
the adaptive Poisson-Boltzmann software (APBS).
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A-posteriori error estimation is important for the quality assessment of a particular reduced model.
In this work, we improve an existing a-posteriori error estimator for linear second order mechanical
systems to scale with large system dimensions and implement it in practice. The main result consists
in fast computable analytical terms of constants in the undamped case which need the inversion of a
large matrix if computed numerically.
We consider the undamped second order mechanical system

Mq̈(t) + Kq(t) = Bu(t)

stemming, e.g., from a large scale FE model with symmetric, positive definite mass and stiffness
matrices M and K. The error estimator from [1]

∆q(t) = C11(t)‖em,0‖G + C12(t)‖ėm,0‖G +

∫ t

0
C12(t− τ)‖R̃m(τ)‖Gdτ

of the error em in the position q has several ingredients: The initial errors em,0 and ėm,0, the residual
R̃m of the reduced solution, a weighted norm ‖ · ‖G with weighting matrix G := M in our case, and
certain constants C11(t) and C12(t). These constants have a major influence on the performance of
the error estimator. As described in [1], they are calculated as weighted norms of certain parts Φij(t)
of the fundamental matrix Φ(t) := eAt of A which is the system matrix of the equivalent first order
system. Calculation of A involves the inversion of the mass matrix M . Even though the calculation
of the constants C11(t) and C12(t) belong to the offline step, it is unfeasible to calculate the inverse of
M for large systems due to practical restrictions in computation time and memory consumption.
Here, we proof that the constant C11(t) can be chosen to be 1 and C12(t) has a more complex up-
per bound which can be computed with only a few eigenvalues of a generalized eigenvalue problem.
Therefore, no more inversion of the mass matrix is needed and upper bounds of the constants can be
calculated very quickly. The proofs involve rewriting the weighted norm ‖ · ‖G as solution of a general-
ized eigenvalue problem, a series expansion of Φij(t), the spectral theorem, and several trigonometric
identities. The main results states that

‖Φ12(t)‖G ≤ max

{ |sin(µ1t)|
µ1

,
|sin(µ2t)|

µ2
, . . . ,

|sin(µm−1t)|
µm−1

,
1

µm

}
(1)

for µ1 ≤ µ2 ≤ · · · ≤ µN being the first N ordered square roots of the generalized eigenvalues of the
problem Kx = λMx which can be efficiently computed with an Arnoldi / Lancosz algorithm. The
more eigenvalues N the user chooses, the better is the approximation to C12(t). In practice, only a
hand full of eigenvalues are needed for a good bound.
In order to be of practical use, we describe a way to add the error estimator in a non-intrusive way
to existing simulation code like the elastic multibody software Neweul-M2. The error estimator is now
calculated in parallel during the solution of the reduced system allowing to influence the simulation by
stopping it due to a too large error or by refining the projection basis for improved simulation results.
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Reduced order energy based modeling in energy transport networks

V. Mehrmann1

1TU Berlin

We discuss an energy based modeling approach to deal with coupled systems from different physical
domains that act on widely different scales. Each physical system is modeled via a model hierarchy
(ranging from detailed models for simulation to reduced models for control and optimization) of port-
Hamiltonian differential algebraic systems [1]. The systems are coupled via a network of submodel hi-
erarchies coupled via power conserving interconnections so that the full system stays port-Hamiltonian.
Using this very flexible approach, it is possible to control the accuracy of each component separately
and to the need of the application [2, 6]. Error controlled model reduction of the submodels as well
as the whole model and Galerkin projection as in Finite Element Modeling work in an analogous way.
We will demonstrate the approach with real world examples from gas transport optimization [3, 7],
power grid modeling [5], and the analysis of disk brake squeal [4].
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In our framework, we consider parametric linear time-invariant (LTI) systems

E(µ)ẋ(t) = A(µ)x(t) +B(µ)u(t),

y(t) = C(µ)x(t),
(1)

assuming the system to be asymptotically stable and the system matrix E(µ) to be invertible for all
parameters µ ∈ Ξ ⊂ Rd. Further, we assume all matrices to be a�ne decomposable.
Our aim is to reduce (1), while preserving the a�ne decomposition, in the H2 ⊗ L2-optimal sense
meaning that the reduced order model (ROM) minimizes an error measure consisting of the L2-error
with respect to the parameters and the H2-error with respect to the system response:

‖H −Hr‖2H2⊗L2 :=
1

2π

∞∫

−∞

∫

Ξ

‖H(iω, µ)−Hr(iω, µ)‖2Fdµ dω,

where H and Hr denote the transfer functions of the full order model and the ROM, respectively.
One way to derive such an H2 ⊗ L2-optimal ROM for (1), where only the input and output matrices
B(µ) and C(µ) are parametrized, is an interpolatory projection method described in [1], that is based
on the Iterative Rational Krylov Algorithm (IRKA) (see [2]).
In contrast to this approach, we present a more general approach picking up the idea of the Two-Sided
Iteration Algorithm (TSIA) for non-parametric LTI systems (see [4]). The Wilson conditions (see
[3]), given as matrix equations, are necessary conditions for the H2-optimal model order reduction
problem. In the parametric setting, Wilson-type necessary optimality conditions are now given as
integral matrix-valued equations.
In our contribution, we will show how these Wilson-type conditions can be derived for parametric
systems (1). Further, we present a way to solve these conditions analytically if only the input and
output matrices are parametrized as in [1]. If time permits, we will show possible extensions of this
analysis to more general systems (1).
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We consider second-order systems of the form

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t),

y(t) = Cpx(t) + Cvẋ(t),

where M is invertible and λ2M + λD +K is asymptotically stable. Our objective is �nding (locally)
H2-optimal reduced order models of the same form

M̂ ¨̂x(t) + D̂ ˙̂x(t) + K̂x̂(t) = B̂u(t),

ŷ(t) = Ĉpx̂(t) + Ĉv
˙̂x(t).

For �rst-order systems, the Iterative Rational Krylov Algorithm (IRKA) [2] can �nd locallyH2-optimal
reduced order models. It is based on interpolation-based necessary optimality conditions. Several
methods for second-order systems based on IRKA were proposed in [4] which attempt to satisfy the
necessary optimality conditions for �rst-order systems as closely as possible. It is not clear if these
methods satisfy any necessary optimality conditions for second-order systems.
Interpolation-based necessary optimality conditions for second-order systems were derived for second-
order systems [1], but with the assumption that M̂ , D̂, and K̂ are simultaneously diagonalizable.
Additionally, no algorithm was proposed so far to satisfy these interpolation conditions.
We take the approach of a related H2-optimal model order reduction method for �rst-order systems,
the Two-Sided Iteration Algorithm (TSIA) [5]. This method is based on Gramian-based necessary
optimality conditions, the Wilson conditions [3]. Following the derivation of Wilson conditions, we
�nd the necessary conditions for a reduced second-order system to be H2-optimal. From this, we
propose an algorithm, analogous to TSIA, for structure-preserving H2-optimal model order reduction
of second-order systems. We also discuss preservation of symmetry and positive-de�niteness of M , D,
and K in the reduced model.
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Rigorous models of industrial systems often involve parameter-dependent dynamical processes. For
example, in the heat transfer process, the material properties and the external environment often have
in�uences on the heat capacity. In order to study these phenomena, many simulations of large-scale
�nite element models are necessary, which is a very costly or even prohibitive computational task. As a
result, model order reduction techniques are required to capture the parameter-varying behavior of the
original model. If the parameter variation is piece-wise constant, several interpolation-based methods
can be applied, we refer to [1] and the references therein. However, for time-varying parameters, how
to �nd an e�cient reduction method is still an open problem.
In this paper, we consider the linear parameter-varying (LPV) system which has the following form

Σlpv :

{
ẋ(t) = Ax(t) +

∑np

i=1 pi(t)Aix(t) + Bu(t)
y(t) = Cx(t)

, (1)

where A,Ai ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. The number of parameters is np. Under the
assumption that the system Σlpv given by (1) is bounded-input bounded-output (BIBO) stable, the
system can be reconsidered as a bilinear control system,

Σbl :

{
ẋ(t) = Ax(t) +

∑np+m
j=1 Njx(t)uj(t) + B̃u(t)

y(t) = Cx(t)
, (2)

where Nj = 0, j ≤ m, Nj = Ai,m < j ≤ np + m and B̃ = [B 0 . . . 0] ∈ Rn×(np+m).

The aim is to �nd a reduced-order bilinear control system Σ̂bl such that the H2 norm

∥∥∥Σbl − Σ̂bl

∥∥∥
H2

is minimized. To achieve the above goal, we formulate the model order reduction problem as an
optimization problem on the Grassmann manifold and solve it by applying a gradient-based algorithm.
Based on the work for LTI systems [2], upper bounds of the line search step size in the algorithm are
proposed to guarantee the convergence of the algorithm. Numerical examples are used to demonstrate
the performance of the proposed method.
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Model reduction of parametrized aerodynamic flows: discontinuous
Galerkin reduced basis empirical quadrature procedure

Masayuki Yano1

1University of Toronto, Toronto, ON, Canada

We present a model reduction formulation for parametrized nonlinear partial differential equations
(PDEs) with emphasis on the compressible Reynolds-averaged Navier-Stokes (RANS) equations. The
approach builds on four key ingredients: the discontinuous Galerkin (DG) method which provides
high-order accuracy and stability for convection-dominated flows; anisotropic adaptive mesh refine-
ment which quantifies and efficiently controls the spatial discretization error; reduced basis (RB)
spaces which provides rapidly convergent approximations to the parametric manifold; sparse empiri-
cal quadrature rules which provide “hyperreduction” to enable rapid evaluation of the nonlinear DG
residual and output forms associated with the RB spaces. The quadrature rules are identified by a
linear program (LP) empirical quadrature procedure (EQP) [1] which (i) admits efficient solution by
a simplex method and (ii) directly controls the solution error induced by the approximate quadrature.
The errors associated with the spatial discretization, reduced basis approximation, and hyperreduction
are simultaneously controlled in a systematic manner by a greedy algorithm in the offline stage.

We demonstrate the approach for combined model and discretization uncertainty quantification (UQ)
of the RANS equations with the Spalart-Allmaras (SA) turbulence model. The model error arises from
the uncertainty in SA model parameters. The DG-RB-EQP method achieves significant computational
savings while tightly controlling the discretization error associated with the spatial, reduced basis, and
quadrature approximations; see Table 1 for the control of the latter two. The rapid predictions provided
by the DG-RB-EQP method also enables control of the Monte Carlo (MC) sampling error in the context
of UQ.

N |T ν | |Σν | maxµ∈Ξtrial ‖rh(uνN (µ), ·;µ)‖(Vh)′ maxµ∈Ξtest
|Jh(µ)−JνN (µ)|
|Jh(µ)|

1 6 3 2.2× 10−1 2.2× 10−2

4 28 15 1.1× 10−1 4.4× 10−3

8 50 35 6.7× 10−2 2.4× 10−3

Table 1: Convergence of the DG-RB-EQP method for RANS-SA flow over an RAE2822 airfoil for
M∞ = 0.3, Rec = 6.5 × 106 and α = 2.79◦. The table reports the dimension of the RB space
(N), the number of reduced elements (|T ν |), the number of reduced facets (|Σν |), the maximum dual
norm of the residual over a training set, and the maximum relative output error over a test set. The
model contains four parameters: the turbulent Prandtl number, Kármán constant, and two near-
wall destruction constants. The “truth” approximation obtained by an adaptive DG method contains
|T h| = 1315 elements, |Σh| = 2850 facets, and N ≡ 39450 degrees of freedom; the speedup relative
to the adaptive DG method is ≈ 25, and the speedup relative to a typical second-order method on a
“best-practice” mesh is ≈ 500. The estimated mean drag coefficient is 90.4 counts with the following
error decomposition: 0.3% due to spatial (FE) error; 0.24% due to reduced-basis and hyperreduction
(RB-EQP) error; and 0.04% due to MC sampling error.
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A Leray Regularized Ensemble-Proper Orthogonal Decomposition

Method for Parameterized Convection-Dominated Flows
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Partial di�erential equations (PDE) are often dependent on input quantities which are inherently un-
certain. To quantify this uncertainty these PDEs must be solved over a large ensemble of parameters.
Even for a single realization this can a computationally intensive process. In the case of �ows governed
by the Navier-Stokes equation, a method has been devised for computing an ensemble of solutions.
Recently a reduced order model derived from a proper orthogonal decomposition (POD) was incor-
porated into a newly developed ensemble algorithm [1]. Although the ensemble-POD method was
successful in the numerical simulation of laminar �ows, it yields numerical inaccuracies for convection-
dominated �ows. In this work we put forth a regularized model, the Leray ensemble-POD model, for
the numerical simulation of convection-dominated �ows. The Leray ensemble-POD model employs
spatial �ltering to smooth (regularize) the convection term in the Navier-Stokes. For the new Leray
ensemble-POD algorithm, we also propose a numerical discretization with better stability properties
than those of the numerical scheme for the standard ensemble-POD method. For this new numerical
discretization, we prove its stability and convergence. Furthermore, we show that the Leray ensemble-
POD method is more accurate than the standard ensemble-POD method in the numerical simulation
of a two-dimensional �ow between two o�set circles.
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High Reynolds Aerothermal Simulations and Reduced Basis
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We present in this talk our work on model order reduction for aerothermal simulations. The model
involves the resolution of coupled non-linear parametrized partial differential equations in which affine
decomposition is not obtained. We consider the coupling between the incompressible Navier-Stokes
equations and an advection diffusion equation for the temperature. This coupling can be either in one
or two ways depending if we do consider only forced or both natural and forced convections.
Since the physical parameters induce high Reynolds and Peclet numbers, we have to introduce stabil-
isation operators in the discrete formulation in order to deal with the well known numerical stability
issue. The chosen stabilization, applied to both fluid and heat equations, is the usual Streamline-
Upwind/Petrov-Galerkin (SUPG) which adds artificial diffusivity in the direction of the convection
field. However this method often produces non physical undershoots or overshoots in the edge of dis-
continuities, which can be critical when you want to ensure, for instance, the positiveness of certain
fields.
To tackle this discontinuity problem, we add in our model a new operator, known in the literature as
shock capturing method. This new operator is non-linear and adds artificial diffusivity in the region of
the discontinuities in order to treat under/overshoots. Although this method is particularly efficient,
it induces a new difficulty, because the system becomes fully non-linear.

We present in this talk our order reduction strategy for this model, based on Reduced Basis Method
(RBM). In order to recover a affine decomposition for this complex model, we implemented a discrete
variation of the Empirical Interpolation Method (EIM) [1, 3] which is a discrete version of the original
EIM. This variant allows to build a approximated affine decomposition for complex operators such as
in the case of SUPG [4]. We also use this method for the non-linear operators induced by the shock
capturing method.
The construction of a EIM basis for non-linear operators, involves a potentially huge numbers of non-
linear FEM resolutions - depending of the size of the sampling. Even if this basis is built during
an offline phase, we usually cannot afford such expensive computational cost. We took advantage of
the resent development of the Simultaneous EIM Reduced basis algorithm (SER) [2] to tackle this
issue. Enjoying the efficiency offered by reduced basis approximation, this method provides a huge
computational gain and can require as little as N + 1 finite element solves where N is the dimension
of the RB approximation. As an illustration we present a application of a cooling system of a printed
circuit board with different heat sources. The model is parametrized with different physical and
geometrical parameters.

This SER variant is now available in the generic and seamlessly parallel reduced basis framework of
the opensource library Feel++ (Finite Element method Embedded Language in C++, http://www.
feelpp.org).
This work has been founded by the ANR project CHORUS.

References

[1] M. Barrault, Y. Maday, N. C. Nguyen, and A. Patera. An empirical interpolation method: ap-
plication to efficient reduced-basis discretization of partial differential equations. Comptes Rendus
Mathematique, 339(9):667–672, 2004.

116



[2] C. Daversin and C. Prud’Homme. Simultaneous empirical interpolation and reduced basis method
for non-linear problems. Comptes Rendus Mathématique, 353(12):1105–1109, 2015.

[3] M. Grepl, Y. Maday, N. C. Nguyen, and A. Patera. Efficient reduced-basis treatment of non-
affine and nonlinear partial differential equations. ESAIM: Mathematical Modelling and Numerical
Analysis, 41(03):575–605, 2007.

[4] F. Negri, A. Manzoni, and D. Amsallem. Efficient model reduction of parametrized systems by
matrix discrete empirical interpolation. Journal of Computational Physics, 303:431–454, 2015.

2

117



h and hp Adaptive Interpolation of Transformed Snapshots for

Parametric Functions with Jumps

G. Welper1

1University of Southern California, USA

In comparison to elliptic and parabolic problems, our abilities to simulate parametric or stochastic
hyperbolic PDEs is still fairly limited. Among several challenges, the e�cient approximation of the
PDE's solution is largely an open problem: They typically contain parameter dependent jumps and
kinks, which diminish the convergence rates of established methods, including reduced basis meth-
ods, POD or polynomial chaos expansions. However, if the jump locations were independent of the
parameters, they would be �invisible� in parameter direction and pose no further di�culty for the
approximation. Therefore, we propose to reduce these parameter dependent jumps to this favorable
situation, by introducing transformations of the physical domain. They are computed in an o�ine
phase together with the snapshots and align the jump sets of the snapshots with the jumps at an
arbitrary target parameter. After alignment, in the online phase, we are in the favorable situation
described above and apply a simple polynomial interpolation of the transformed snapshots. In order
to calculate the transforms, we minimize the L1-error of the transformed interpolation on a training
sample of parameters with respect to the transform itself. Although this appears to be a complicated
optimization problem, we can split the transform into a series of local contributions that allow us to
�localize� the optimization problem and avoid unsatisfactory local minima.
The above outlined method works well if we can align all discontinuities, which is not always the
case. For example, if the number of jumps changes in parameter, a proper alignment is not possible.
In contrast to the parameter dependent movement of the jumps, which induce singularities for every
parameter, changes of the number of jumps (and similar non-align-able cases) are local in parameter
space. Therefore, we propose an additional h or hp adaption in parameter space to handle these cases.
To make this idea practical, one has to overcome two di�culties:

1. Changes in the shock structure are usually located on a surface in parameter space, which is not
resolved with high order by common h re�nement strategies.

2. Local adaptions are questionable in high parameter dimensions.

Both di�culties are approached by a �tensor� construction: We �rst construct h or hp adaptive in-
terpolations with transformed snapshots for low parameter dimensions and then use a tensor product
like construction for higher parameter dimensions. In general, tensor products of h adaptive approx-
imations are only reasonable if the singularities are aligned with the coordinate axes. This is rarely
the case but automatically accounted for by the transforms in our approximation method. The tensor
construction is susceptible to the curse of dimensionality but it is designed to be used with tensor
based methods for high dimensions in the future.
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