
Random Sketching for Model Order Reduction

MoRePas IV, 11th April 2018, Nantes, France

Oleg Balabanov
joint work with Anthony Nouy

Centrale Nantes, GeM (UMR 6183), LMJL(UMR 6629), France

Summary

Classical RB and POD methods involve the following computations:

• Offline (computed once):
evaluating solution samples (snapshots)

• Online (for each parameter value):
solving reduced systems of equations

We propose a probabilistic way for reducing the cost of all the computations besides solving
linear systems.

Our methodology can be beneficial in any computational environment.

1

Summary

Classical RB and POD methods involve the following computations:

• Offline (computed once):
evaluating solution samples (snapshots),
computing low-rank approximation of snapshot matrix for POD,
evaluating numerous inner products.

• Online (for each parameter value):
solving reduced systems of equations

We propose a probabilistic way for reducing the cost of all the computations besides solving
linear systems.

Our methodology can be beneficial in any computational environment.

1

Summary

Classical RB and POD methods involve the following computations:

• Offline (computed once):
evaluating solution samples (snapshots),
computing low-rank approximation of snapshot matrix for POD,
evaluating numerous inner products.

• Online (for each parameter value):
solving reduced systems of equations,
evaluating the reduced quantities from their affine decompositions.

We propose a probabilistic way for reducing the cost of all the computations besides solving
linear systems.

Our methodology can be beneficial in any computational environment.

1

Summary

Classical RB and POD methods involve the following computations:

• Offline (computed once):
evaluating solution samples (snapshots),
computing low-rank approximation of snapshot matrix for POD,
evaluating numerous inner products.

• Online (for each parameter value):
solving reduced systems of equations,
evaluating the reduced quantities from their affine decompositions.

We propose a probabilistic way for reducing the cost of all the computations besides solving
linear systems.

Our methodology can be beneficial in any computational environment.

1

Summary

Classical RB and POD methods involve the following computations:

• Offline (computed once):
evaluating solution samples (snapshots),
computing low-rank approximation of snapshot matrix for POD,
evaluating numerous inner products.

• Online (for each parameter value):
solving reduced systems of equations,
evaluating the reduced quantities from their affine decompositions.

We propose a probabilistic way for reducing the cost of all the computations besides solving
linear systems.

Our methodology can be beneficial in any computational environment.

1

Outline

Classical projection-based MOR

`2 embeddings

Random Sketching for MOR

Numerical experiments

2

Outline

Classical projection-based MOR

`2 embeddings

Random Sketching for MOR

Numerical experiments

Parameter-dependent problem

Parameter-dependent system of equations

Let ξ ∈ Ξ denote the parameters. Find u(ξ) ∈ U such that

A(ξ)u(ξ) = b(ξ),

where A(ξ) : U → U ′ and b(ξ) ∈ U ′.

Output quantity

Let l(ξ) ∈ U ′ be the extractor of a quantity of interest.

s(ξ) := 〈l(ξ),u(ξ)〉.

3

Parameter-dependent problem

Parameter-dependent system of equations

Let ξ ∈ Ξ denote the parameters. Find u(ξ) ∈ U such that

A(ξ)u(ξ) = b(ξ),

where A(ξ) : U → U ′ and b(ξ) ∈ U ′.

Output quantity

Let l(ξ) ∈ U ′ be the extractor of a quantity of interest.

s(ξ) := 〈l(ξ),u(ξ)〉.

3

Classical projection-based MOR

Galerkin projection

u(ξ) is approximated by its projection ur(ξ) onto r-dimensional subspace Ur ⊆ U defined by

〈r(ur(ξ); ξ),v〉 = 0, ∀v ∈ Ur,

where r(x; ξ) := b(ξ)−A(ξ)x.

Error estimation/certification

For u∗r(ξ) ∈ Ur,

‖u(ξ)− u∗r(ξ)‖U ≤ ∆r(u∗r(ξ); ξ) := ‖r(u∗r(ξ); ξ)‖U ′
η(ξ) .

4

Classical projection-based MOR

Galerkin projection

u(ξ) is approximated by its projection ur(ξ) onto r-dimensional subspace Ur ⊆ U defined by

〈r(ur(ξ); ξ),v〉 = 0, ∀v ∈ Ur,

where r(x; ξ) := b(ξ)−A(ξ)x.

Error estimation/certification

For u∗r(ξ) ∈ Ur,

‖u(ξ)− u∗r(ξ)‖U ≤ ∆r(u∗r(ξ); ξ) := ‖r(u∗r(ξ); ξ)‖U ′
η(ξ) .

4

Classical projection-based MOR

Assume, A(ξ) and b(ξ) are parameter-separable with mA and mb terms:

A(ξ) =
mA∑
i=1

Aiφi(ξ), b(ξ) =
mb∑
i=1

biθi(ξ)

Offline computational cost

• The snapshots can be computed with a standard solver on a server or multiple workstations.
r snapshots: O(rn logn) time.

• Evaluating numerous inner products between high-dimensional vectors:
O(nr2m2

A + nm2
b) flops.

• Many passes over large data sets.
• For distributed computing, extremely high amount of communication between machines.

5

Classical projection-based MOR

Online computational cost

• Evaluating the reduced quantities from their affine expansions.
A reduced system: O(rmA +mb) time, the residual norm: O(r2m2

A +m2
b) time.

• Solving a reduced system of equations: O(r2 log r) flops with iterative solver.

The cost of evaluating inner products between high-dimensional vectors is dominant for both
offline and online stages.

6

Illustration

1

0.5

0

-0.5

-1

We consider the following Helmholtz equation:

∆u+ κ2u = 0,

with first order absorbing b.c.’s and wave initialization on Γin.

The background has κ = κ0 := 50. The cloak consists of 10 layers.

The i-th layer has κ = κi. Define ξ := (κ1, ..., κ10) ∈ [κ0,
√

2κ0]10 := Ξ. 7

Illustration

Discretization: n ≈ 200000 complex degrees of freedom. r = 150 iterations of the classical
greedy algorithm were performed. We chose η(ξ) = 1.

offline total 150 snapshots online solution reduced quantities
5402s 336s 0.6ms 1.9ms

Table 1: CPU times

• Computing the snapshots occupied only 6% of the overall runtime of the classical greedy
algorithm.

• Evaluating the residual terms from the precomputed affine expansions has the dominant
cost in the online stage.

8

Outline

Classical projection-based MOR

`2 embeddings

Random Sketching for MOR

Numerical experiments

ε-subspace embeddings

Consider a discrete setting U := Kn, with a “natural” inner product for U :

〈·, ·〉U := 〈RU ·, ·〉

where RU : U → U ′ is self-adjoint positive definite matrix.

〈·, ·〉U can be extremely expensive to operate with.

Construction of a reduced model requires evaluation of inner products only between vectors lying
in low-dimensional subspaces of U .

For these vectors, 〈·, ·〉U can be efficiently approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉

where Θ ∈ Kk×n, with k � n.

Let V be a subspace of U . If

∀x,y ∈ V,
∣∣〈x,y〉U − 〈x,y〉ΘU ∣∣ ≤ ε‖x‖U‖y‖U ,

then Θ is called U → `2 ε-subspace embedding for V .

9

ε-subspace embeddings

Consider a discrete setting U := Kn, with a “natural” inner product for U :

〈·, ·〉U := 〈RU ·, ·〉

where RU : U → U ′ is self-adjoint positive definite matrix.

〈·, ·〉U can be extremely expensive to operate with.

Construction of a reduced model requires evaluation of inner products only between vectors lying
in low-dimensional subspaces of U .

For these vectors, 〈·, ·〉U can be efficiently approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉

where Θ ∈ Kk×n, with k � n.

Let V be a subspace of U . If

∀x,y ∈ V,
∣∣〈x,y〉U − 〈x,y〉ΘU ∣∣ ≤ ε‖x‖U‖y‖U ,

then Θ is called U → `2 ε-subspace embedding for V .

9

ε-subspace embeddings

Consider a discrete setting U := Kn, with a “natural” inner product for U :

〈·, ·〉U := 〈RU ·, ·〉

where RU : U → U ′ is self-adjoint positive definite matrix.

〈·, ·〉U can be extremely expensive to operate with.

Construction of a reduced model requires evaluation of inner products only between vectors lying
in low-dimensional subspaces of U .

For these vectors, 〈·, ·〉U can be efficiently approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉

where Θ ∈ Kk×n, with k � n.

Let V be a subspace of U . If

∀x,y ∈ V,
∣∣〈x,y〉U − 〈x,y〉ΘU ∣∣ ≤ ε‖x‖U‖y‖U ,

then Θ is called U → `2 ε-subspace embedding for V .

9

ε-subspace embeddings

Consider a discrete setting U := Kn, with a “natural” inner product for U :

〈·, ·〉U := 〈RU ·, ·〉

where RU : U → U ′ is self-adjoint positive definite matrix.

〈·, ·〉U can be extremely expensive to operate with.

Construction of a reduced model requires evaluation of inner products only between vectors lying
in low-dimensional subspaces of U .

For these vectors, 〈·, ·〉U can be efficiently approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉

where Θ ∈ Kk×n, with k � n.

Let V be a subspace of U . If

∀x,y ∈ V,
∣∣〈x,y〉U − 〈x,y〉ΘU ∣∣ ≤ ε‖x‖U‖y‖U ,

then Θ is called U → `2 ε-subspace embedding for V .

9

ε-subspace embeddings

Consider a discrete setting U := Kn, with a “natural” inner product for U :

〈·, ·〉U := 〈RU ·, ·〉

where RU : U → U ′ is self-adjoint positive definite matrix.

〈·, ·〉U can be extremely expensive to operate with.

Construction of a reduced model requires evaluation of inner products only between vectors lying
in low-dimensional subspaces of U .

For these vectors, 〈·, ·〉U can be efficiently approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉

where Θ ∈ Kk×n, with k � n.

Let V be a subspace of U . If

∀x,y ∈ V,
∣∣〈x,y〉U − 〈x,y〉ΘU ∣∣ ≤ ε‖x‖U‖y‖U ,

then Θ is called U → `2 ε-subspace embedding for V .
9

Data-oblivious embeddings

Θ is a realization of a probability distribution over matrices.

Θ is called a (ε, δ, d) oblivious U → `2 subspace embedding if for any d-dimensional subspace V
of U

P (Θ is a U → `2 ε-subspace embedding for V) ≥ 1− δ.

Classical oblivious `2 → `2 ε-subspace embeddings:

• The rescaled Gaussian and Rademacher distributions if
k ≥ 7.87ε−2(6.9d+ log(1/δ)) for K = R or
k ≥ 7.87ε−2(13.8d+ log(1/δ)) for K = C

• The partial Subsampled Randomized Hadamard Transform (P-SRHT)
k ≥ 6ε−2

[√
d+

√
8 log(6n/δ)

]2
log(3d/δ) (for K = R or C)

The lower bounds are independent or only weakly (logarithmically) dependent on the dimension
n and the probability of failure δ.

10

Data-oblivious embeddings

Θ is a realization of a probability distribution over matrices.

Θ is called a (ε, δ, d) oblivious U → `2 subspace embedding if for any d-dimensional subspace V
of U

P (Θ is a U → `2 ε-subspace embedding for V) ≥ 1− δ.

Classical oblivious `2 → `2 ε-subspace embeddings:

• The rescaled Gaussian and Rademacher distributions if
k ≥ 7.87ε−2(6.9d+ log(1/δ)) for K = R or
k ≥ 7.87ε−2(13.8d+ log(1/δ)) for K = C

• The partial Subsampled Randomized Hadamard Transform (P-SRHT)
k ≥ 6ε−2

[√
d+

√
8 log(6n/δ)

]2
log(3d/δ) (for K = R or C)

The lower bounds are independent or only weakly (logarithmically) dependent on the dimension
n and the probability of failure δ.

10

Data-oblivious embeddings

Oblivious U → `2 subspace embedding Θ can be built from classical `2 → `2 subspace
embeddings:

Θ = ΩQ,

where Q ∈ Ks×n is rectangular matrix such that QHQ = RU .

Computational aspects

• The rescaled Rademacher distribution can be efficiently implemented using standard
SQL primitives.

• The P-SRHT has a hierarchical structure needing just O(n log k) flops for multiplication by
a vector.

• The products with Gaussian or Rademacher matrices are embarrassingly parallel.
• The product ΩQ should not be evaluated explicitly.
• The random sequences can be generated using a seeded random number generator with

negligible communication (for parallel and distributed computing) and storage costs.

11

Data-oblivious embeddings

Oblivious U → `2 subspace embedding Θ can be built from classical `2 → `2 subspace
embeddings:

Θ = ΩQ,

where Q ∈ Ks×n is rectangular matrix such that QHQ = RU .

Computational aspects

• The rescaled Rademacher distribution can be efficiently implemented using standard
SQL primitives.

• The P-SRHT has a hierarchical structure needing just O(n log k) flops for multiplication by
a vector.

• The products with Gaussian or Rademacher matrices are embarrassingly parallel.
• The product ΩQ should not be evaluated explicitly.
• The random sequences can be generated using a seeded random number generator with

negligible communication (for parallel and distributed computing) and storage costs.

11

Outline

Classical projection-based MOR

`2 embeddings

Random Sketching for MOR

Numerical experiments

Sketched Galerkin projection

Galerkin projection

‖r(ur(ξ); ξ)‖U ′r = 0, ‖w‖U ′r := max
x∈Ur\{0}

|〈R−1
U w,x〉U |
‖x‖U

.

Quasi-optimality of Galerkin projection

‖u(ξ)− ur(ξ)‖U ≤ (1 + βr(ξ)
αr(ξ)

)‖u(ξ)−PUr u(ξ)‖U .

αr(ξ) := min
x∈Ur

‖A(ξ)x‖U ′r
‖x‖U

, βr(ξ) := max
x∈span{u(ξ)}+Ur

‖A(ξ)x‖U ′r
‖x‖U

For any x ∈ Ur the residual r(x; ξ) belongs to Yr(ξ)′:= RUYr(ξ), with

Yr(ξ) := Ur + span{R−1
U A(ξ)x : x ∈ Ur}+ span{R−1

U b(ξ)}.

If Θ is a U → `2 ε-embedding for Yr(ξ), then

αΘ
r (ξ) ≥ 1√

1 + ε
(1− εar(ξ))αr(ξ), βΘ

r (ξ) ≤ 1√
1− ε

(βr(ξ) + εβ(ξ)),

where ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.

12

Sketched Galerkin projection

Sketched Galerkin projection

‖r(ur(ξ); ξ)‖ΘU ′r = 0, ‖w‖ΘU ′r := max
x∈Ur\{0}

|〈R−1
U w,x〉ΘU |
‖x‖ΘU

.

Quasi-optimality of Galerkin projection

‖u(ξ)− ur(ξ)‖U ≤ (1 + βr(ξ)
αr(ξ)

)‖u(ξ)−PUr
u(ξ)‖U .

αr(ξ) := min
x∈Ur

‖A(ξ)x‖U ′r
‖x‖U

, βr(ξ) := max
x∈span{u(ξ)}+Ur

‖A(ξ)x‖U ′r
‖x‖U

For any x ∈ Ur the residual r(x; ξ) belongs to Yr(ξ)′:= RUYr(ξ), with

Yr(ξ) := Ur + span{R−1
U A(ξ)x : x ∈ Ur}+ span{R−1

U b(ξ)}.

If Θ is a U → `2 ε-embedding for Yr(ξ), then

αΘ
r (ξ) ≥ 1√

1 + ε
(1− εar(ξ))αr(ξ), βΘ

r (ξ) ≤ 1√
1− ε

(βr(ξ) + εβ(ξ)),

where ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.

12

Sketched Galerkin projection

Sketched Galerkin projection

‖r(ur(ξ); ξ)‖ΘU ′r = 0, ‖w‖ΘU ′r := max
x∈Ur\{0}

|〈R−1
U w,x〉ΘU |
‖x‖ΘU

.

Quasi-optimality of Galerkin projection

‖u(ξ)− ur(ξ)‖U ≤ (1 + βr(ξ)
αr(ξ)

)‖u(ξ)−PUr
u(ξ)‖U .

αr(ξ) := min
x∈Ur

‖A(ξ)x‖U ′r
‖x‖U

, βr(ξ) := max
x∈span{u(ξ)}+Ur

‖A(ξ)x‖U ′r
‖x‖U

For any x ∈ Ur the residual r(x; ξ) belongs to Yr(ξ)′:= RUYr(ξ), with

Yr(ξ) := Ur + span{R−1
U A(ξ)x : x ∈ Ur}+ span{R−1

U b(ξ)}.

If Θ is a U → `2 ε-embedding for Yr(ξ), then

αΘ
r (ξ) ≥ 1√

1 + ε
(1− εar(ξ))αr(ξ), βΘ

r (ξ) ≤ 1√
1− ε

(βr(ξ) + εβ(ξ)),

where ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.

12

Sketched Galerkin projection

Sketched Galerkin projection

‖r(ur(ξ); ξ)‖ΘU ′r = 0, ‖w‖ΘU ′r := max
x∈Ur\{0}

|〈R−1
U w,x〉ΘU |
‖x‖ΘU

.

Quasi-optimality of sketched Galerkin projection

‖u(ξ)− ur(ξ)‖U ≤ (1 + βΘ
r (ξ)
αΘ
r (ξ))‖u(ξ)−PUr

u(ξ)‖U .

αΘ
r (ξ) := min

x∈Ur

‖A(ξ)x‖ΘU ′r
‖x‖U

, βΘ
r (ξ) := max

x∈span{u(ξ)}+Ur

‖A(ξ)x‖ΘU ′r
‖x‖U

For any x ∈ Ur the residual r(x; ξ) belongs to Yr(ξ)′:= RUYr(ξ), with

Yr(ξ) := Ur + span{R−1
U A(ξ)x : x ∈ Ur}+ span{R−1

U b(ξ)}.

If Θ is a U → `2 ε-embedding for Yr(ξ), then

αΘ
r (ξ) ≥ 1√

1 + ε
(1− εar(ξ))αr(ξ), βΘ

r (ξ) ≤ 1√
1− ε

(βr(ξ) + εβ(ξ)),

where ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.

12

Sketched Galerkin projection

Sketched Galerkin projection

‖r(ur(ξ); ξ)‖ΘU ′r = 0, ‖w‖ΘU ′r := max
x∈Ur\{0}

|〈R−1
U w,x〉ΘU |
‖x‖ΘU

.

Quasi-optimality of sketched Galerkin projection

‖u(ξ)− ur(ξ)‖U ≤ (1 + βΘ
r (ξ)
αΘ
r (ξ))‖u(ξ)−PUr

u(ξ)‖U .

αΘ
r (ξ) := min

x∈Ur

‖A(ξ)x‖ΘU ′r
‖x‖U

, βΘ
r (ξ) := max

x∈span{u(ξ)}+Ur

‖A(ξ)x‖ΘU ′r
‖x‖U

For any x ∈ Ur the residual r(x; ξ) belongs to Yr(ξ)′:= RUYr(ξ), with

Yr(ξ) := Ur + span{R−1
U A(ξ)x : x ∈ Ur}+ span{R−1

U b(ξ)}.

If Θ is a U → `2 ε-embedding for Yr(ξ), then

αΘ
r (ξ) ≥ 1√

1 + ε
(1− εar(ξ))αr(ξ), βΘ

r (ξ) ≤ 1√
1− ε

(βr(ξ) + εβ(ξ)),

where ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.

12

Sketched Galerkin projection

Sketched Galerkin projection

‖r(ur(ξ); ξ)‖ΘU ′r = 0, ‖w‖ΘU ′r := max
x∈Ur\{0}

|〈R−1
U w,x〉ΘU |
‖x‖ΘU

.

Quasi-optimality of sketched Galerkin projection

‖u(ξ)− ur(ξ)‖U ≤ (1 + βΘ
r (ξ)
αΘ
r (ξ))‖u(ξ)−PUr

u(ξ)‖U .

αΘ
r (ξ) := min

x∈Ur

‖A(ξ)x‖ΘU ′r
‖x‖U

, βΘ
r (ξ) := max

x∈span{u(ξ)}+Ur

‖A(ξ)x‖ΘU ′r
‖x‖U

For any x ∈ Ur the residual r(x; ξ) belongs to Yr(ξ)′:= RUYr(ξ), with

Yr(ξ) := Ur + span{R−1
U A(ξ)x : x ∈ Ur}+ span{R−1

U b(ξ)}.

If Θ is a U → `2 ε-embedding for Yr(ξ), then

αΘ
r (ξ) ≥ 1√

1 + ε
(1− εar(ξ))αr(ξ), βΘ

r (ξ) ≤ 1√
1− ε

(βr(ξ) + εβ(ξ)),

where ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.
12

Error estimation with sketched norm

Error estimation/certification

∆r(u∗r(ξ); ξ) := ‖r(u∗r(ξ); ξ)‖U ′
η(ξ) .

If Θ is a U → `2 ε-embedding for Yr(ξ), then
√

1− ε∆r(u∗r(ξ); ξ) ≤ ∆Θ
r (u∗r(ξ); ξ) ≤

√
1 + ε∆r(u∗r(ξ); ξ).

13

Error estimation with sketched norm

Error estimation/certification with sketched norm

∆Θ
r (u∗r(ξ); ξ) := ‖r(u∗r(ξ); ξ)‖ΘU ′

η(ξ) .

If Θ is a U → `2 ε-embedding for Yr(ξ), then
√

1− ε∆r(u∗r(ξ); ξ) ≤ ∆Θ
r (u∗r(ξ); ξ) ≤

√
1 + ε∆r(u∗r(ξ); ξ).

13

Error estimation with sketched norm

Error estimation/certification with sketched norm

∆Θ
r (u∗r(ξ); ξ) := ‖r(u∗r(ξ); ξ)‖ΘU ′

η(ξ) .

If Θ is a U → `2 ε-embedding for Yr(ξ), then
√

1− ε∆r(u∗r(ξ); ξ) ≤ ∆Θ
r (u∗r(ξ); ξ) ≤

√
1 + ε∆r(u∗r(ξ); ξ).

13

ε-embedding for collection of subspaces

Constructing U → `2 ε-embedding for Yr(ξ) for all ξ ∈ Ξ

• If Ξ is of finite cardinality. Choose (ε, δ|Ξ|−1
, d) oblivious U → `2 subspace embedding,

where d := maxξ∈Ξ dim(Yr(ξ)).

• If Ξ is infinite. Assume
⋃
ξ∈Ξ Yr(ξ) is contained in a space Y ∗r of dimension d∗. Choose

(ε, δ, d∗) oblivious U → `2 subspace embedding.

14

ε-embedding for collection of subspaces

Constructing U → `2 ε-embedding for Yr(ξ) for all ξ ∈ Ξ

• If Ξ is of finite cardinality. Choose (ε, δ|Ξ|−1
, d) oblivious U → `2 subspace embedding,

where d := maxξ∈Ξ dim(Yr(ξ)).
• If Ξ is infinite. Assume

⋃
ξ∈Ξ Yr(ξ) is contained in a space Y ∗r of dimension d∗. Choose

(ε, δ, d∗) oblivious U → `2 subspace embedding.

14

A sketch of a reduced model

We refer to UΘ
r := ΘUr and the affine expansions of

VΘ
r (ξ) := ΘR−1

U A(ξ)Ur, bΘ(ξ) := ΘR−1
U b(ξ), lr(ξ)H := l(ξ)HUr,

as Θ-sketch of a reduced model associated with Ur.

• Given the sketch, the quantities required for the online stage can be computed with
negligible cost.

• The sketch can be efficiently evaluated in any computational environment.
• Complexity with P-SRHT: O(nrmA log k + nmb log k). Recall, the classical complexity:
O(nr2m2

A + nm2
b).

• A sketch of each snapshot can be obtained on a separate machine with absolutely no
communication.

• No need to maintain large matrices and vectors.
• With good matrices, random projections are embarrassingly parallel.

15

A sketch of a reduced model

We refer to UΘ
r := ΘUr and the affine expansions of

VΘ
r (ξ) := ΘR−1

U A(ξ)Ur, bΘ(ξ) := ΘR−1
U b(ξ), lr(ξ)H := l(ξ)HUr,

as Θ-sketch of a reduced model associated with Ur.

• Given the sketch, the quantities required for the online stage can be computed with
negligible cost.

• The sketch can be efficiently evaluated in any computational environment.
• Complexity with P-SRHT: O(nrmA log k + nmb log k). Recall, the classical complexity:
O(nr2m2

A + nm2
b).

• A sketch of each snapshot can be obtained on a separate machine with absolutely no
communication.

• No need to maintain large matrices and vectors.
• With good matrices, random projections are embarrassingly parallel.

15

Sketched Greedy algorithm

Standard error indicator for reduced basis generation with the Greedy algorithm

∆̃r(ξ) := ∆r(ur(ξ); ξ).

• If Θ is U → `2 ε-subspace embedding for Yr(ξ) then ∆Θ
r (ur(ξ); ξ) is close to optimal.

• Greedy algorithm is adaptive. Θ has to be U → `2 ε-subspace embedding for Yr(ξ) for
all possible outcomes.

• Let m = |Ξtrain|. Choose (ε,m−1(m
r

)−1
δ, 2r + 1) oblivious U → `2 subspace embedding

for Θ.

16

Sketched Greedy algorithm

Sketched error indicator for reduced basis generation with the Greedy algorithm

∆̃r(ξ) := ∆Θ
r (ur(ξ); ξ).

• If Θ is U → `2 ε-subspace embedding for Yr(ξ) then ∆Θ
r (ur(ξ); ξ) is close to optimal.

• Greedy algorithm is adaptive. Θ has to be U → `2 ε-subspace embedding for Yr(ξ) for
all possible outcomes.

• Let m = |Ξtrain|. Choose (ε,m−1(m
r

)−1
δ, 2r + 1) oblivious U → `2 subspace embedding

for Θ.

16

Sketched Greedy algorithm

Sketched error indicator for reduced basis generation with the Greedy algorithm

∆̃r(ξ) := ∆Θ
r (ur(ξ); ξ).

• If Θ is U → `2 ε-subspace embedding for Yr(ξ) then ∆Θ
r (ur(ξ); ξ) is close to optimal.

• Greedy algorithm is adaptive. Θ has to be U → `2 ε-subspace embedding for Yr(ξ) for
all possible outcomes.

• Let m = |Ξtrain|. Choose (ε,m−1(m
r

)−1
δ, 2r + 1) oblivious U → `2 subspace embedding

for Θ.

16

Sketched Greedy algorithm

Sketched error indicator for reduced basis generation with the Greedy algorithm

∆̃r(ξ) := ∆Θ
r (ur(ξ); ξ).

• If Θ is U → `2 ε-subspace embedding for Yr(ξ) then ∆Θ
r (ur(ξ); ξ) is close to optimal.

• Greedy algorithm is adaptive. Θ has to be U → `2 ε-subspace embedding for Yr(ξ) for
all possible outcomes.

• Let m = |Ξtrain|. Choose (ε,m−1(m
r

)−1
δ, 2r + 1) oblivious U → `2 subspace embedding

for Θ.

16

Sketched Greedy algorithm

Sketched error indicator for reduced basis generation with the Greedy algorithm

∆̃r(ξ) := ∆Θ
r (ur(ξ); ξ).

• If Θ is U → `2 ε-subspace embedding for Yr(ξ) then ∆Θ
r (ur(ξ); ξ) is close to optimal.

• Greedy algorithm is adaptive. Θ has to be U → `2 ε-subspace embedding for Yr(ξ) for
all possible outcomes.

• Let m = |Ξtrain|. Choose (ε,m−1(m
r

)−1
δ, 2r + 1) oblivious U → `2 subspace embedding

for Θ.

16

Sketched Proper Orthogonal Decomposition

Let Um := [u(ξ1),u(ξ2), ...,u(ξm)] ∈ Kn×m and Um := range(Um).

Ur = arg min
Ur ⊆ Um

1
m

m∑
i=1
‖u(ξi)−PUr u(ξi)‖2U .

Method of snapshots for POD
Gt = λt,

where [G]i,j = 〈u(ξi),u(ξj)〉U .
U∗r := range(UmTr),

where Tr := [t1, ..., tr].

If Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖ui −PU∗r

ui‖2U ≤
1 + ε

1− ε
1
m

m∑
i=1
‖ui −PUr

ui‖2U .

Moreover, quasi-optimality of U∗r can be guaranteed even when Θ is U → `2 ε-subspace
embedding not for the whole Um but several specific subspaces.

17

Sketched Proper Orthogonal Decomposition

Let Um := [u(ξ1),u(ξ2), ...,u(ξm)] ∈ Kn×m and Um := range(Um).

Ur = arg min
Ur ⊆ Um

1
m

m∑
i=1
‖u(ξi)−PUr

u(ξi)‖2U .

Method of snapshots for POD
Gt = λt,

where [G]i,j = 〈u(ξi),u(ξj)〉U .

U∗r := range(UmTr),

where Tr := [t1, ..., tr].

If Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖ui −PU∗r ui‖2U ≤

1 + ε

1− ε
1
m

m∑
i=1
‖ui −PUr

ui‖2U .

Moreover, quasi-optimality of U∗r can be guaranteed even when Θ is U → `2 ε-subspace
embedding not for the whole Um but several specific subspaces.

17

Sketched Proper Orthogonal Decomposition

Let Um := [u(ξ1),u(ξ2), ...,u(ξm)] ∈ Kn×m and Um := range(Um).

Ur = arg min
Ur ⊆ Um

1
m

m∑
i=1
‖u(ξi)−PUr u(ξi)‖2U .

Sketched Method of snapshots for POD

GΘt = λt,

where [GΘ]i,j = 〈u(ξi),u(ξj)〉ΘU .

U∗r := range(UmTr),

where Tr := [t1, ..., tr].

If Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖ui −PU∗r

ui‖2U ≤
1 + ε

1− ε
1
m

m∑
i=1
‖ui −PUr

ui‖2U .

Moreover, quasi-optimality of U∗r can be guaranteed even when Θ is U → `2 ε-subspace
embedding not for the whole Um but several specific subspaces.

17

Sketched Proper Orthogonal Decomposition

Let Um := [u(ξ1),u(ξ2), ...,u(ξm)] ∈ Kn×m and Um := range(Um).

Ur = arg min
Ur ⊆ Um

1
m

m∑
i=1
‖u(ξi)−PUr u(ξi)‖2U .

Sketched Method of snapshots for POD

GΘt = λt,

where [GΘ]i,j = 〈u(ξi),u(ξj)〉ΘU .

U∗r := range(UmTr),

where Tr := [t1, ..., tr].

If Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖ui −PU∗r

ui‖2U ≤
1 + ε

1− ε
1
m

m∑
i=1
‖ui −PUr

ui‖2U .

Moreover, quasi-optimality of U∗r can be guaranteed even when Θ is U → `2 ε-subspace
embedding not for the whole Um but several specific subspaces.

17

Sketched Proper Orthogonal Decomposition

Let Um := [u(ξ1),u(ξ2), ...,u(ξm)] ∈ Kn×m and Um := range(Um).

Ur = arg min
Ur ⊆ Um

1
m

m∑
i=1
‖u(ξi)−PUr u(ξi)‖2U .

Sketched Method of snapshots for POD

GΘt = λt,

where [GΘ]i,j = 〈u(ξi),u(ξj)〉ΘU .

U∗r := range(UmTr),

where Tr := [t1, ..., tr].

If Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖ui −PU∗r

ui‖2U ≤
1 + ε

1− ε
1
m

m∑
i=1
‖ui −PUr

ui‖2U .

Moreover, quasi-optimality of U∗r can be guaranteed even when Θ is U → `2 ε-subspace
embedding not for the whole Um but several specific subspaces.

17

Sketched Proper Orthogonal Decomposition

Let Um := [u(ξ1),u(ξ2), ...,u(ξm)] ∈ Kn×m and Um := range(Um).

Ur = arg min
Ur ⊆ Um

1
m

m∑
i=1
‖u(ξi)−PUr u(ξi)‖2U .

Sketched Method of snapshots for POD

GΘt = λt,

where [GΘ]i,j = 〈u(ξi),u(ξj)〉ΘU .

U∗r := range(UmTr),

where Tr := [t1, ..., tr].

If Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖ui −PU∗r

ui‖2U ≤
1 + ε

1− ε
1
m

m∑
i=1
‖ui −PUr

ui‖2U .

Moreover, quasi-optimality of U∗r can be guaranteed even when Θ is U → `2 ε-subspace
embedding not for the whole Um but several specific subspaces.

17

Sketched Proper Orthogonal Decomposition

Assume that we are given the sketch of a reduced model associated with Um:

UΘ
m := ΘUm, VΘ

m(ξ) := ΘR−1
U A(ξ)Um, ...

Given Tr, the sketch associated with U∗r := UmTr can be evaluated with

ΘU∗r = UΘ
mTr, ΘR−1

U A(ξ)U∗r = VΘ
m(ξ)Tr, ...

• The sketch associated with U∗r can be computed without operating with large vectors and
matrices.

• With random sketching evaluating and storing POD vectors is not necessary.
• The sketch associated with Um can be efficiently computed on distributed machines with

no communication.
• The cost of transferring the sketches to the core is independent of n.

18

Sketched Proper Orthogonal Decomposition

Assume that we are given the sketch of a reduced model associated with Um:

UΘ
m := ΘUm, VΘ

m(ξ) := ΘR−1
U A(ξ)Um, ...

Given Tr, the sketch associated with U∗r := UmTr can be evaluated with

ΘU∗r = UΘ
mTr, ΘR−1

U A(ξ)U∗r = VΘ
m(ξ)Tr, ...

• The sketch associated with U∗r can be computed without operating with large vectors and
matrices.

• With random sketching evaluating and storing POD vectors is not necessary.
• The sketch associated with Um can be efficiently computed on distributed machines with

no communication.
• The cost of transferring the sketches to the core is independent of n.

18

Sketched Proper Orthogonal Decomposition

Assume that we are given the sketch of a reduced model associated with Um:

UΘ
m := ΘUm, VΘ

m(ξ) := ΘR−1
U A(ξ)Um, ...

Given Tr, the sketch associated with U∗r := UmTr can be evaluated with

ΘU∗r = UΘ
mTr, ΘR−1

U A(ξ)U∗r = VΘ
m(ξ)Tr, ...

• The sketch associated with U∗r can be computed without operating with large vectors and
matrices.

• With random sketching evaluating and storing POD vectors is not necessary.
• The sketch associated with Um can be efficiently computed on distributed machines with

no communication.
• The cost of transferring the sketches to the core is independent of n.

18

Outline

Classical projection-based MOR

`2 embeddings

Random Sketching for MOR

Numerical experiments

Thermal block benchmark

We consider the following equation:

−∇ · (κ∇T) = 0

with T = 0 on the top face, zero flux on the side faces and unit flux on the bottom face.

κ(x) = κi, x ∈ Ωi.

Let ξ := (κ1, ..., κ8) ∈ Ξ := [1
10 , 10]8, κi ∼ LU [1

10 , 10].

Discretization: n ≈ 120000 degrees of freedom.

We chose η(ξ) = 1 for error estimation. 19

Accuracy of Galerkin projection

0 500 1000 1500
10-2

10 -1

100

101

Classical
p=1
p=0.9
p=0.5
p=0.1

k

qu
an

til
e(

∆
Ξ

,p
)

u(ξ) approximated by a projection ur(ξ) ∈ Ur with r = 100.

• ∆Ξ = maxξ∈Ξtest
∆r(u∗r(ξ), ξ). |Ξtest| = 1000.

• We provide results for P-SRHT. Similar performance of Gaussian and Rademacher matrices.
20

Accuracy of error indicator

101 102 103 104

10-2

10 -1

100

p=1
p=0.9
p=0.5
p=0.1

k

qu
an

til
e(

ein
d

Ξ
,p

)

• eind
Ξ = maxξ∈Ξtest

|∆r(u∗r(ξ), ξ)−∆Θ
r (u∗r(ξ), ξ)|/∆r(u∗r(ξ), ξ). |Ξtest| = 1000.

• Accurate error estimation for k ≥ 100.

21

Numerical stability of error indicator

∆r(u∗r , ξ) and ∆Θ
r (u∗r , ξ) were evaluated for several u∗r at different distances from u(ξ).

10-14 10-10 10-6 10-2
10-14

10-10

10-6

10-2

Classical
Gaussian
P-SRHT

exact ∆r(u∗
r ; ξ)

co
m

pu
te

d
∆

r
(u

∗ r
;ξ

)

• The sketched error indicator is less sensitive to round off errors.

22

Randomized POD

|Ξtrain| = 1000, r = 100.

0 500 1000
10 -8

10 -7

10 -6

10 -5

10 -4

Classical, exact error
Gaussian, exact error
Gaussian, error indicator
P-SRHT, exact error
P-SRHT, error indicator

k

e

• For k ≥ 500, the approximate POD basis is close to optimal.

23

Randomized Greedy algorithm

|Ξtrain| = 10000. ∆Ξ := maxξ∈Ξtrain
∆(ur(ξ); ξ).

0 50 100
10-2

10-1

100

101

Classical
k=250
k=500
k=1000

∆
Ξ

r

• The convergences of the classical and the randomized (with k ≥ 500) algorithms are almost
identical.

24

Multi-layered acoustic cloak

1

0.5

0

-0.5

-1

∆u+ κ2u = 0,
with first order absorbing b.c.’s and wave initialization on Γin.

The background has κ = κ0 := 50. The cloak consists of 10 layers. The i-th layer has κ = κi.
Define ξ := (κ1, ..., κ10) ∈ [κ0,

√
2κ0]10 := Ξ.

Discretization: n ≈ 200000.
25

Sketched Galerkin projection

× 104
0 0.5 1 1.5 2 2.5

10-3

10 -2

10 -1

100

Classical
p=1
p=0.9
p=0.5
p=0.1

qu
an

til
e(

∆
Ξ

,p
)

k
u(ξ) approximated by a projection ur(ξ) ∈ Ur with r = 150.

• The accuracy of random sketching for Galerkin projection is sensitive to operator’s
properties.
More precisely, it depends on ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.
26

Practical computational costs

The CPU times in seconds taken by the classical greedy algorithm and the randomized greedy
algorithm. |Ξtrain| = 20000.

Category Computations Classical Randomized
snapshots 336 336

high-dimensional
matrix-vector &
inner products

sketch − 111
Galerkin 407 25
error 2520 −
remaining 185 39
total 3111 175

provisional
online solver

sketch − 180
Galerkin 712 712
error 1578 373
total 2291 1265

• We chose k = 20000.
• The memory consumption has been reduced from 6.29GB to only 0.96GB.
• For larger problems even more drastic reduction of computational cost is expected.

27

Conclusions and perspectives

• The computational cost of constructing a reduced order model is essentially reduced to
evaluating the samples (snapshots).

• The reduced order model is constructed from a random sketch (a set of efficiently
computable random projections).

• Our method does not require maintaining and operating with high-dimensional vectors.
• Better efficiency in terms of complexity (number of flops), memory consumption, scalability,

communication cost between distributed machines, etc.

28

Future work

• Sketched primal-dual correction.
• Better theoretical bounds for k.
• A posteriori error indicators/certificates of accuracy of the sketch.
• Randomized minimal residual projection with random sketching insensitive to

operators’s properties (unlike sketched Galerkin projection).
• Efficient parameter-dependent preconditioners for projection-based MOR.

29

Bibliography

O. Balabanov and A. Nouy.
Randomized linear algebra for model reduction. Part I: Galerkin methods and error
estimation.
arXiv preprint arXiv:1803.02602, 2018.

O. Balabanov and A. Nouy.
Randomized linear algebra for model reduction. Part II: minimal residual methods,
adaptivity and efficiency.
2018.
David P Woodruff et al.
Sketching as a tool for numerical linear algebra.
Foundations and Trends R© in Theoretical Computer Science, 10(1–2):1–157, 2014.

Andreas Buhr and Kathrin Smetana.
Randomized local model order reduction.
arXiv preprint arXiv:1706.09179, 2017.

30

	Classical projection-based MOR
	2 embeddings
	Random Sketching for MOR
	Numerical experiments

