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Summary

Classical RB and POD methods involve the following computations:

• Offline (computed once):
evaluating solution samples (snapshots)

• Online (for each parameter value):
solving reduced systems of equations

We propose a probabilistic way for reducing the cost of all the computations besides solving
linear systems.

Our methodology can be beneficial in any computational environment.
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Parameter-dependent problem

Parameter-dependent system of equations

Let ξ ∈ Ξ denote the parameters. Find u(ξ) ∈ U such that

A(ξ)u(ξ) = b(ξ),

where A(ξ) : U → U ′ and b(ξ) ∈ U ′.

Output quantity

Let l(ξ) ∈ U ′ be the extractor of a quantity of interest.

s(ξ) := 〈l(ξ),u(ξ)〉.
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Classical projection-based MOR

Galerkin projection

u(ξ) is approximated by its projection ur(ξ) onto r-dimensional subspace Ur ⊆ U defined by

〈r(ur(ξ); ξ),v〉 = 0, ∀v ∈ Ur,

where r(x; ξ) := b(ξ)−A(ξ)x.

Error estimation/certification

For u∗r(ξ) ∈ Ur,

‖u(ξ)− u∗r(ξ)‖U ≤ ∆r(u∗r(ξ); ξ) := ‖r(u∗r(ξ); ξ)‖U ′
η(ξ) .
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Classical projection-based MOR

Assume, A(ξ) and b(ξ) are parameter-separable with mA and mb terms:

A(ξ) =
mA∑
i=1

Aiφi(ξ), b(ξ) =
mb∑
i=1

biθi(ξ)

Offline computational cost

• The snapshots can be computed with a standard solver on a server or multiple workstations.
r snapshots: O(rn logn) time.

• Evaluating numerous inner products between high-dimensional vectors:
O(nr2m2

A + nm2
b) flops.

• Many passes over large data sets.
• For distributed computing, extremely high amount of communication between machines.
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Classical projection-based MOR

Online computational cost

• Evaluating the reduced quantities from their affine expansions.
A reduced system: O(rmA +mb) time, the residual norm: O(r2m2

A +m2
b) time.

• Solving a reduced system of equations: O(r2 log r) flops with iterative solver.

The cost of evaluating inner products between high-dimensional vectors is dominant for both
offline and online stages.
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Illustration
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We consider the following Helmholtz equation:

∆u+ κ2u = 0,

with first order absorbing b.c.’s and wave initialization on Γin.

The background has κ = κ0 := 50. The cloak consists of 10 layers.

The i-th layer has κ = κi. Define ξ := (κ1, ..., κ10) ∈ [κ0,
√

2κ0]10 := Ξ. 7



Illustration

Discretization: n ≈ 200000 complex degrees of freedom. r = 150 iterations of the classical
greedy algorithm were performed. We chose η(ξ) = 1.

offline total 150 snapshots online solution reduced quantities
5402s 336s 0.6ms 1.9ms

Table 1: CPU times

• Computing the snapshots occupied only 6% of the overall runtime of the classical greedy
algorithm.

• Evaluating the residual terms from the precomputed affine expansions has the dominant
cost in the online stage.
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ε-subspace embeddings

Consider a discrete setting U := Kn, with a “natural” inner product for U :

〈·, ·〉U := 〈RU ·, ·〉

where RU : U → U ′ is self-adjoint positive definite matrix.

〈·, ·〉U can be extremely expensive to operate with.

Construction of a reduced model requires evaluation of inner products only between vectors lying
in low-dimensional subspaces of U .

For these vectors, 〈·, ·〉U can be efficiently approximated by

〈·, ·〉ΘU := 〈Θ·,Θ·〉

where Θ ∈ Kk×n, with k � n.

Let V be a subspace of U . If

∀x,y ∈ V,
∣∣〈x,y〉U − 〈x,y〉ΘU ∣∣ ≤ ε‖x‖U‖y‖U ,

then Θ is called U → `2 ε-subspace embedding for V .
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Data-oblivious embeddings

Θ is a realization of a probability distribution over matrices.

Θ is called a (ε, δ, d) oblivious U → `2 subspace embedding if for any d-dimensional subspace V
of U

P (Θ is a U → `2 ε-subspace embedding for V ) ≥ 1− δ.

Classical oblivious `2 → `2 ε-subspace embeddings:

• The rescaled Gaussian and Rademacher distributions if
k ≥ 7.87ε−2(6.9d+ log(1/δ)) for K = R or
k ≥ 7.87ε−2(13.8d+ log(1/δ)) for K = C

• The partial Subsampled Randomized Hadamard Transform (P-SRHT)
k ≥ 6ε−2

[√
d+

√
8 log(6n/δ)

]2
log(3d/δ) (for K = R or C)

The lower bounds are independent or only weakly (logarithmically) dependent on the dimension
n and the probability of failure δ.
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Data-oblivious embeddings

Oblivious U → `2 subspace embedding Θ can be built from classical `2 → `2 subspace
embeddings:

Θ = ΩQ,

where Q ∈ Ks×n is rectangular matrix such that QHQ = RU .

Computational aspects

• The rescaled Rademacher distribution can be efficiently implemented using standard
SQL primitives.

• The P-SRHT has a hierarchical structure needing just O(n log k) flops for multiplication by
a vector.

• The products with Gaussian or Rademacher matrices are embarrassingly parallel.
• The product ΩQ should not be evaluated explicitly.
• The random sequences can be generated using a seeded random number generator with

negligible communication (for parallel and distributed computing) and storage costs.
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Sketched Galerkin projection

Galerkin projection

‖r(ur(ξ); ξ)‖U ′r = 0, ‖w‖U ′r := max
x∈Ur\{0}

|〈R−1
U w,x〉U |
‖x‖U

.

Quasi-optimality of Galerkin projection

‖u(ξ)− ur(ξ)‖U ≤ (1 + βr(ξ)
αr(ξ)

)‖u(ξ)−PUr u(ξ)‖U .

αr(ξ) := min
x∈Ur

‖A(ξ)x‖U ′r
‖x‖U

, βr(ξ) := max
x∈span{u(ξ)}+Ur

‖A(ξ)x‖U ′r
‖x‖U

For any x ∈ Ur the residual r(x; ξ) belongs to Yr(ξ)′:= RUYr(ξ), with

Yr(ξ) := Ur + span{R−1
U A(ξ)x : x ∈ Ur}+ span{R−1

U b(ξ)}.

If Θ is a U → `2 ε-embedding for Yr(ξ), then

αΘ
r (ξ) ≥ 1√

1 + ε
(1− εar(ξ))αr(ξ), βΘ

r (ξ) ≤ 1√
1− ε

(βr(ξ) + εβ(ξ)),

where ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.
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Error estimation with sketched norm

Error estimation/certification

∆r(u∗r(ξ); ξ) := ‖r(u∗r(ξ); ξ)‖U ′
η(ξ) .

If Θ is a U → `2 ε-embedding for Yr(ξ), then
√

1− ε∆r(u∗r(ξ); ξ) ≤ ∆Θ
r (u∗r(ξ); ξ) ≤

√
1 + ε∆r(u∗r(ξ); ξ).
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ε-embedding for collection of subspaces

Constructing U → `2 ε-embedding for Yr(ξ) for all ξ ∈ Ξ

• If Ξ is of finite cardinality. Choose (ε, δ|Ξ|−1
, d) oblivious U → `2 subspace embedding,

where d := maxξ∈Ξ dim(Yr(ξ)).

• If Ξ is infinite. Assume
⋃
ξ∈Ξ Yr(ξ) is contained in a space Y ∗r of dimension d∗. Choose

(ε, δ, d∗) oblivious U → `2 subspace embedding.
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A sketch of a reduced model

We refer to UΘ
r := ΘUr and the affine expansions of

VΘ
r (ξ) := ΘR−1

U A(ξ)Ur, bΘ(ξ) := ΘR−1
U b(ξ), lr(ξ)H := l(ξ)HUr,

as Θ-sketch of a reduced model associated with Ur.

• Given the sketch, the quantities required for the online stage can be computed with
negligible cost.

• The sketch can be efficiently evaluated in any computational environment.
• Complexity with P-SRHT: O(nrmA log k + nmb log k). Recall, the classical complexity:
O(nr2m2

A + nm2
b).

• A sketch of each snapshot can be obtained on a separate machine with absolutely no
communication.

• No need to maintain large matrices and vectors.
• With good matrices, random projections are embarrassingly parallel.
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Sketched Greedy algorithm

Standard error indicator for reduced basis generation with the Greedy algorithm

∆̃r(ξ) := ∆r(ur(ξ); ξ).

• If Θ is U → `2 ε-subspace embedding for Yr(ξ) then ∆Θ
r (ur(ξ); ξ) is close to optimal.

• Greedy algorithm is adaptive. Θ has to be U → `2 ε-subspace embedding for Yr(ξ) for
all possible outcomes.

• Let m = |Ξtrain|. Choose (ε,m−1(m
r

)−1
δ, 2r + 1) oblivious U → `2 subspace embedding

for Θ.
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Sketched Proper Orthogonal Decomposition

Let Um := [u(ξ1),u(ξ2), ...,u(ξm)] ∈ Kn×m and Um := range(Um).

Ur = arg min
Ur ⊆ Um

1
m

m∑
i=1
‖u(ξi)−PUr u(ξi)‖2U .

Method of snapshots for POD
Gt = λt,

where [G]i,j = 〈u(ξi),u(ξj)〉U .
U∗r := range(UmTr),

where Tr := [t1, ..., tr].

If Θ is U → `2 ε-subspace embedding for Um, then

1
m

m∑
i=1
‖ui −PU∗r

ui‖2U ≤
1 + ε

1− ε
1
m

m∑
i=1
‖ui −PUr

ui‖2U .

Moreover, quasi-optimality of U∗r can be guaranteed even when Θ is U → `2 ε-subspace
embedding not for the whole Um but several specific subspaces.
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Sketched Proper Orthogonal Decomposition

Assume that we are given the sketch of a reduced model associated with Um:

UΘ
m := ΘUm, VΘ

m(ξ) := ΘR−1
U A(ξ)Um, ...

Given Tr, the sketch associated with U∗r := UmTr can be evaluated with

ΘU∗r = UΘ
mTr, ΘR−1

U A(ξ)U∗r = VΘ
m(ξ)Tr, ...

• The sketch associated with U∗r can be computed without operating with large vectors and
matrices.

• With random sketching evaluating and storing POD vectors is not necessary.
• The sketch associated with Um can be efficiently computed on distributed machines with

no communication.
• The cost of transferring the sketches to the core is independent of n.
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Thermal block benchmark

We consider the following equation:

−∇ · (κ∇T ) = 0

with T = 0 on the top face, zero flux on the side faces and unit flux on the bottom face.

κ(x) = κi, x ∈ Ωi.

Let ξ := (κ1, ..., κ8) ∈ Ξ := [ 1
10 , 10]8, κi ∼ LU [ 1

10 , 10].

Discretization: n ≈ 120000 degrees of freedom.

We chose η(ξ) = 1 for error estimation. 19



Accuracy of Galerkin projection
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u(ξ) approximated by a projection ur(ξ) ∈ Ur with r = 100.

• ∆Ξ = maxξ∈Ξtest
∆r(u∗r(ξ), ξ). |Ξtest| = 1000.

• We provide results for P-SRHT. Similar performance of Gaussian and Rademacher matrices.
20



Accuracy of error indicator
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• eind
Ξ = maxξ∈Ξtest

|∆r(u∗r(ξ), ξ)−∆Θ
r (u∗r(ξ), ξ)|/∆r(u∗r(ξ), ξ). |Ξtest| = 1000.

• Accurate error estimation for k ≥ 100.
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Numerical stability of error indicator

∆r(u∗r , ξ) and ∆Θ
r (u∗r , ξ) were evaluated for several u∗r at different distances from u(ξ).
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• The sketched error indicator is less sensitive to round off errors.

22



Randomized POD

|Ξtrain| = 1000, r = 100.

0 500 1000
10 -8
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k
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• For k ≥ 500, the approximate POD basis is close to optimal.
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Randomized Greedy algorithm

|Ξtrain| = 10000. ∆Ξ := maxξ∈Ξtrain
∆(ur(ξ); ξ).

0 50 100
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r

• The convergences of the classical and the randomized (with k ≥ 500) algorithms are almost
identical.
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Multi-layered acoustic cloak

1

0.5

0

-0.5

-1

∆u+ κ2u = 0,
with first order absorbing b.c.’s and wave initialization on Γin.

The background has κ = κ0 := 50. The cloak consists of 10 layers. The i-th layer has κ = κi.
Define ξ := (κ1, ..., κ10) ∈ [κ0,

√
2κ0]10 := Ξ.

Discretization: n ≈ 200000.
25



Sketched Galerkin projection

× 104
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k
u(ξ) approximated by a projection ur(ξ) ∈ Ur with r = 150.

• The accuracy of random sketching for Galerkin projection is sensitive to operator’s
properties.
More precisely, it depends on ar(ξ) := maxw∈Ur

‖A(ξ)w‖U′
‖A(ξ)w‖U′r

.
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Practical computational costs

The CPU times in seconds taken by the classical greedy algorithm and the randomized greedy
algorithm. |Ξtrain| = 20000.

Category Computations Classical Randomized
snapshots 336 336

high-dimensional
matrix-vector &
inner products

sketch − 111
Galerkin 407 25
error 2520 −
remaining 185 39
total 3111 175

provisional
online solver

sketch − 180
Galerkin 712 712
error 1578 373
total 2291 1265

• We chose k = 20000.
• The memory consumption has been reduced from 6.29GB to only 0.96GB.
• For larger problems even more drastic reduction of computational cost is expected.

27



Conclusions and perspectives

• The computational cost of constructing a reduced order model is essentially reduced to
evaluating the samples (snapshots).

• The reduced order model is constructed from a random sketch (a set of efficiently
computable random projections).

• Our method does not require maintaining and operating with high-dimensional vectors.
• Better efficiency in terms of complexity (number of flops), memory consumption, scalability,

communication cost between distributed machines, etc.

28



Future work

• Sketched primal-dual correction.
• Better theoretical bounds for k.
• A posteriori error indicators/certificates of accuracy of the sketch.
• Randomized minimal residual projection with random sketching insensitive to

operators’s properties (unlike sketched Galerkin projection).
• Efficient parameter-dependent preconditioners for projection-based MOR.

29
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