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Need efficient optimization under uncertainty methods
for large-scale systems

Optimization under uncertainty challenging with large-scale models

Cost functions require sampling from expensive solutions
Often O(100)−O(10, 000) solves needed

Penalizing “tail risk” introduces nonlinear cost functions

How to sample efficiently (reduce # of samples) to compute cost
function?
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Risk-averse optimization

min
z∈Z

J(z) := R(s(y(·; z))) +
α

2
‖z‖2Z ,

where y(ξ, z) is a solution to the parameterized high-fidelity model

F (y(ξ, z), ξ, z) = 0, ∀ξ ∈ Ξ.

y: high-fidelity solution that depends on the parameter ξ = ξ(ω)

ξ = (ξ1, . . . , ξM ) : Π→ Ξ :=
∏M
i=1 ⊆ RM , density ρ =

∏M
i=1 ρi

R(·) is a risk measure

z: deterministic control/design. One must decide on control before
observing outcome ξ = ξ(ω).

Output quantity of interest:

X(ξ) := s(y(ξ; z))
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Conditional-Value-at-Risk = β-superquantile

Value-at-Risk at level β (= quantile level, often β ≥ 0.95 ):

VaRβ [X] = inf{t ∈ R : Pr[X > t] < 1− β}

Conditional-Value-at-Risk at level β: [Rockafellar and Uryasev, 2000]

CVaRβ [X] = VaRβ [X] +
1

1− β
E
[
(X − VaRβ [X])+

]

Choose R(X) = CVaRβ [X]

Penalizes rare outcomes, length of tail
matters in CVaRβ
CVaRβ in engineering design:

Royset et al., 2017
Yang/Gunzburger, 2017
Morio, 2012
Zou et al., 2017
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How to use ROMs to estimate risk measures efficiently
[Heinkenschloss/K./Takhtaganov/Willcox,’17]

1. Numerical test problem

2. Direct sampling from ROM when error bounds
are available

3. Using ROMs/surrogates in importance sampling
when error is not known
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1) Numerical test problem
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Test problem: Convection-diffusion-reaction [Buffoni and Willcox, 2010]

Model includes a one-step reaction of
the species 2H2 +O2 → 2H2O

Inflow of mixture at left boundary
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Uncertain parameters of the model relate to reaction terms:

ξ = [A,E] ∈ Ξ

Quantity of interest X : Ξ 7→ R related to discretized temperature

X(ξ) = exp

(
‖T(ξ)‖∞ − 2000

100

)
.
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c.d.f. of X(ξ), n = 104
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Reduced-order models via POD

POD ROMs with (D)EIM for Arrhenius reaction terms gives
approximate solutions y ≈ Vryr
Projection matrix Vr from S = 100 snapshots of HFM at 10× 10
equally-spaced values A and E in Ξ

Four different ROMs from r = 1, 2, 3, 4 POD basis vectors

Surrogate models define a new random variable Xr : Ξ 7→ R with

Xr(ξ) = exp

(
‖Tr(ξ)‖∞ − 2000

100

)

Error of ROM 1, ε1(ξ) Error of ROM 2, ε2(ξ) Error of ROM 4, ε4(ξ)
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2) CVaRβ estimation
via direct sampling from ROM
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CVaRβ computation

CVaRβ requires sampling in the tail (=risk) region

If the c.d.f. HX(x) = Pr[X ≤ x] is continuous at x = VaRβ [X],
then Pr

[
X = VaRβ [X]

]
= 0, and

CVaRβ [X] =
1

1− β
E
[
X · I {X ≥ VaRβ [X]}

]
.

Definition: The risk region corresponding to CVaRβ [X] is given by

Gβ [X] := {ξ | X(ξ) ≥ VaRβ [X]} ⊂ Ξ

and the corresponding indicator function of the risk region Gβ [X] is

IGβ [X](ξ) := I {X(ξ) ≥ VaRβ [X]} .
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Reduced-order model (ROM) and risk region

Roadmap: Want bound on |CVaRβ [X]− CVaRβ [Xr]|
Given is a HFM X(ξ) and an approximate quantity of interest Xr(ξ)

Assume the availability of a bound (will be relaxed later):

|X(ξ)−Xr(ξ)| ≤ εr(ξ) for ξ ∈ Ξ.

Definition and Lemma: The ε-risk region corresponding to CVaRβ [X]
is given by

Gεβ [Xr] := {ξ : Xr(ξ) + εr(ξ) ≥ VaRβ [Xr − εr]},

and define

max
ξ∈Gβ [X]∪Gβ [Xr]

εr(ξ) ≤ max
ξ∈Gεβ [Xr]

εr(ξ) =: εGr .

The ε-risk region covers the true risk region:

Gβ [X] ⊆ Gεβ [Xr] and Gβ [Xr] ⊆ Gεβ [Xr]
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Risk regions for four different ROMs
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New error bound for ROM-estimated CVaRβ

Theorem: The error between CVaRβ of the full-order model X and
CVaRβ of the reduced-order model Xr is bounded as∣∣CVaRβ [X]− CVaRβ [Xr]

∣∣
≤

(
1 +

max
{

Pr
[
{X = VaRβ [X]}

]
, Pr

[
{Xr = VaRβ [Xr]}

]}
1− β

)
εGr

≤
(

1 +
1

1− β

)
εGr .

If X and Xr have c.d.f.’s that are continuous at VaRβ [X] and at
VaRβ [Xr], respectively, then∣∣CVaRβ [X]− CVaRβ [Xr]

∣∣ ≤ εGr .
Only need error εGr in the ε-risk region Gεβ [Xr]

We do not need the error function εr(ξ) in all of Ξ
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Error bound guides model selection

Estimates of CVaRβ at level β = 0.95

Maximum error in ROM ε-risk region Ĝεβ [Xr]: ε̂Gr

ĈVaRMC
β Abs error Rel error (%) ε̂Gr

HFM 53.94 — — —
ROM 1 361.40 307.47 570.05 776.00
ROM 2 44.80 9.14 16.94 24.47
ROM 3 49.91 4.02 7.46 9.04
ROM 4 53.87 0.07 0.13 0.96

Note that
∣∣∣ ĈVaRMC

β [X]− ĈVaRMC
β [Xr]

∣∣∣ ≤ ε̂Gr
Choice of ROM to sample from can be guided through error bound
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What if we don’t have a rigorous error bound
|X(ξ)−Xr(ξ)| ≤ εr(ξ)?

4) CVaRβ estimation using
ROMs + importance sampling
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Importance sampling: A change of measure

Define supp(ρ) := {ξ ∈ Ξ | ρ(ξ) > 0}.
Let ϕ be another density with supp(ρ) ⊆ supp(ϕ).

For any integrable function g : Ξ→ R and w(ξ) := ρ(ξ)
ϕ(ξ) we have

Eρ[g] =

∫
Ξ

g(ξ) ρ(ξ) dξ =

∫
Ξ

g(ξ)w(ξ) ϕ(ξ) dξ = Eϕ[gw].

For CVaRβ , perform change of measure, and account for the change
by re-weighting:

CVaRβ [X] =
1

1− β

∫
Ξ̃

IGβ [X](ξ)X(ξ)w(ξ)ϕ(ξ)dξ

Assumption: The support Ξ̃ of the biasing density ϕ satisfies

Gβ [X] ⊂ Ξ̃.
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Optimal biasing density gives zero variance

Lemma: Under certain conditions, ĈVaRIS
β [X]→ CVaRβ [X] w.p. 1 as

n→∞ and

√
n
(

ĈVaRIS
β [X]− CVaRβ [X]

)
⇒

(
Vϕ[(X(·)− VaRβ [X])+ w(·)]

)1/2

1− β
N (0, 1).

Theorem: The optimal biasing density

ϕ∗(ξ) =
IGβ [X](ξ) (X(ξ)− VaRβ [X]) ρ(ξ)

(1− β) (CVaRβ [X]− VaRβ [X])

results in zero “variance”, i.e.,

Vϕ[(X(·)− VaRβ [X])+ w(·)]
n(1− β)2

= 0.

Usual problem: Optimal biasing density depends on CVaRβ ,VaRβ
which we want to compute. ⇒ But helps in finding a good biasing
density which results in low variance
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Approximation of the optimal IS density via ROMs possible

Optimal biasing density ϕ∗ motivates the initial choice

ϕ1(ξ) =
IGβ [X](ξ) ρ(ξ)

1− β
.

Still depends in the risk region of the expensive X

Use a ROM and ε-risk region to get

ϕ(ξ) :=
IGεβ [Xr](ξ) ρ(ξ)

Pr[Gεβ [Xr]]
.

Since Gβ [X] ⊆ Gεβ [Xr]: supp(ρ) = Ξ̃ = Gεβ [Xr] ⊆ supp(ϕ) = Ξ

Theorem: IS with ϕ reduces variance compared to MC sampling with ρ
by

Vϕ
[
IGβ [X](·) (X(·)− VaRβ [X])w(·)

]
Vρ
[
IGβ [X](·) (X(·)− VaRβ [X])

] ≤ Pr
[
Gεβ [Xr]

]
.
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Importance sampling gives accurate CVaRβ estimates

m = 104 ROM evaluations to explore risk region Gεβ [Xr]

Acceptance-rejection algorithm to get samples from biasing
distribution

All ĈVaRIS
β [X] estimates use n = 100 HFM samples, averaged over

K = 100 runs

Reference CVaRref
β = ĈVaRMC

β [X] = 53.94 from 104 HFM samples

MAE =
1

K

K∑
k=1

∣∣∣∣ĈVaRIS
β

(k)
[X]− CVaRref

β [X]

∣∣∣∣ , MRE =
MAE∣∣∣CVaRref

β [X]
∣∣∣×100%

When used with IS, even inaccurate ROMs can give good estimates

Av ĈVaRIS
β [X] MAE MRE (%)

IS 1 54.02 1.99 3.70
IS 2 54.39 1.59 2.96
IS 3 53.74 1.20 2.23
IS 4 53.94 0.66 1.22
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As expected, IS reduces the variance

Estimated variance reduction computed with 100 samples for IS densities
r = 1, 2, 3, 4.

V̂ϕ[ĈVaRIS
β [X]]/V̂ρ[ĈVaRMC

β [X]] P̂r[Gεβ [Xr]]

IS 1 0.2258 0.2463
IS 2 0.1519 0.1771
IS 3 0.0691 0.0967
IS 4 0.0214 0.0519

Recall theorem:

Vϕ
[
IGβ [X](·) (X(·)− VaRβ [X])w(·)

]
Vρ
[
IGβ [X](·) (X(·)− VaRβ [X])

] ≤ Pr
[
Gεβ [Xr]

]
.

As ROMs become more accurate, εr → 0, and
P̂r[Gεβ [Xr]]→ 1− β = 0.05.
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Review and conclusion

Review:

Showed that using ROMs to sample from for CVaRβ computations
is practical + established error bound

Using ROMs together with importance sampling can produce
efficient estimates (ROM only needs to identify risk-region correctly)

Conclusions:

ROM only has to be accurate in ε-risk region ⇒ currently working
on adaptive ROM construction to make method more efficient

Computationally, investing in a ROM pays off (shown in paper)

M. Heinkenschloss, B. Kramer, T. Takhtaganov, K. Willcox.
Conditional-Value-at-Risk estimation via Reduced-Order Models.
Submitted. Available as ACDL Technical Report TR 2017-04.
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