Estimation of Risk Measures with Reduced-Order Models

Boris Kramer¹, T.Takhtaganov, M. Heinkenschloss, K. Willcox

Department of Aeronautics and Astronautics Aerospace Computational Design Laboratory Massachusetts Institute of Technology

Model Reduction of Parametrized Systems IV April 11, 2018

 $^{^1}$ Funded by: DARPA EQUIPS program award number UTA15-001067 and Air Force Center of Excellence on Multi-Fidelity Modeling of Rocket Combustor Dynamics, award FA9550-17-1-0195

Need efficient optimization under uncertainty methods for large-scale systems

- Optimization under uncertainty challenging with large-scale models
 - Cost functions require sampling from expensive solutions
 - \blacksquare Often $\mathcal{O}(100) \mathcal{O}(10,000)$ solves needed
- Penalizing "tail risk" introduces nonlinear cost functions
 - How to sample efficiently (reduce # of samples) to compute cost function?

Risk-averse optimization

$$\min_{z \in \mathcal{Z}} J(z) := \mathcal{R}(s(y(\cdot; z))) + \frac{\alpha}{2} \|z\|_{\mathcal{Z}}^2,$$

where $y(\boldsymbol{\xi}, z)$ is a solution to the parameterized high-fidelity model

$$F(y(\boldsymbol{\xi}, z), \boldsymbol{\xi}, z) = 0, \quad \forall \boldsymbol{\xi} \in \Xi.$$

• y: high-fidelity solution that depends on the parameter $\boldsymbol{\xi} = \boldsymbol{\xi}(\omega)$

•
$$\boldsymbol{\xi} = (\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_M) : \Pi o \Xi := \prod_{i=1}^M \subseteq \mathbb{R}^M$$
, density $ho = \prod_{i=1}^M
ho_i$

- **\mathbb{R}(\cdot)** is a risk measure
- z: deterministic control/design. One must decide on control before observing outcome ξ = ξ(ω).

Output quantity of interest:

$$X(\boldsymbol{\xi}) := s(y(\boldsymbol{\xi}; z))$$

Conditional-Value-at-Risk = β -superquantile

Value-at-Risk at level β (= quantile level, often $\beta \ge 0.95$):

$$\mathsf{VaR}_{\beta}[X] = \inf\{t \in \mathbb{R} : \mathsf{Pr}[X > t] < 1 - \beta\}$$

Conditional-Value-at-Risk at level β : [Rockafellar and Uryasev, 2000]

$$\mathsf{CVaR}_{\beta}[X] = \mathsf{VaR}_{\beta}[X] + \frac{1}{1-\beta}\mathbb{E}\left[\left(X - \mathsf{VaR}_{\beta}[X]\right)_{+}\right]$$

- Choose $\mathcal{R}(X) = \mathsf{CVaR}_{\beta}[X]$
- Penalizes rare outcomes, length of tail matters in CVaR_β
- $CVaR_{\beta}$ in engineering design:
 - Royset et al., 2017
 - Yang/Gunzburger, 2017
 - Morio, 2012
 - Zou et al., 2017

How to use ROMs to estimate risk measures efficiently

[Heinkenschloss/K./Takhtaganov/Willcox,'17]

- 1. Numerical test problem
- 2. Direct sampling from ROM when error bounds are available
- 3. Using ROMs/surrogates in importance sampling when error is not known

1) Numerical test problem

Test problem: Convection-diffusion-reaction [Buffoni and Willcox, 2010]

- Model includes a one-step reaction of the species $2H_2 + O_2 \rightarrow 2H_2O$
- Inflow of mixture at left boundary

Uncertain parameters of the model relate to reaction terms:

$$\boldsymbol{\xi} = [A, E] \in \Xi$$

Quantity of interest $X : \Xi \mapsto \mathbb{R}$ related to discretized temperature

$$X(\boldsymbol{\xi}) = \exp\left(\frac{\|\mathbf{T}(\boldsymbol{\xi})\|_{\infty} - 2000}{100}\right).$$

Reduced-order models via POD

- POD ROMs with (D)EIM for Arrhenius reaction terms gives approximate solutions $\mathbf{y} \approx V_r \mathbf{y}_r$
- Projection matrix V_r from S = 100 snapshots of HFM at 10×10 equally-spaced values A and E in Ξ
- Four different ROMs from r = 1, 2, 3, 4 POD basis vectors
- Surrogate models define a new random variable $X_r: \Xi \mapsto \mathbb{R}$ with

$$X_r(\boldsymbol{\xi}) = \exp\left(\frac{\|\mathbf{T}_r(\boldsymbol{\xi})\|_{\infty} - 2000}{100}\right)$$

2) $CVaR_{\beta}$ estimation via direct sampling from ROM

CVaR_β computation

$CVaR_{\beta}$ requires sampling in the tail (=risk) region

If the c.d.f. $H_X(x) = \Pr[X \le x]$ is continuous at $x = \operatorname{VaR}_{\beta}[X]$, then $\Pr[X = \operatorname{VaR}_{\beta}[X]] = 0$, and

$$\mathsf{CVaR}_{\beta}[X] = \frac{1}{1-\beta} \mathbb{E} \big[X \cdot \mathbb{I} \left\{ X \ge \mathsf{VaR}_{\beta}[X] \right\} \big].$$

Definition: The **risk region** corresponding to $\text{CVaR}_{\beta}[X]$ is given by

$$\mathbb{G}_{\beta}[X] := \{ \xi \mid X(\xi) \geq \mathsf{VaR}_{\beta}[X] \} \subset \Xi$$

and the corresponding indicator function of the risk region $\mathbb{G}_{\beta}[X]$ is

$$\mathbb{I}_{\mathbb{G}_{\beta}[X]}(\xi) := \mathbb{I}\left\{X(\xi) \ge \mathsf{VaR}_{\beta}[X]\right\}.$$

Reduced-order model (ROM) and risk region

Roadmap: Want bound on $|CVaR_{\beta}[X] - CVaR_{\beta}[X_r]|$

- Given is a HFM $X(\xi)$ and an approximate quantity of interest $X_r(\boldsymbol{\xi})$
- Assume the availability of a bound (will be relaxed later):

$$|X(\xi) - X_r(\xi)| \le \epsilon_r(\xi)$$
 for $\xi \in \Xi$.

Definition and Lemma: The ϵ -risk region corresponding to $\text{CVaR}_{\beta}[X]$ is given by

$$\mathbb{G}^{\epsilon}_{\beta}[X_r] := \{ \xi \, : \, X_r(\xi) + \epsilon_r(\xi) \ge \mathsf{VaR}_{\beta}[X_r - \epsilon_r] \},\$$

and define

$$\max_{\xi \in \mathbb{G}_{\beta}[X] \cup \mathbb{G}_{\beta}[X_r]} \epsilon_r(\xi) \le \max_{\xi \in \mathbb{G}_{\beta}^{\epsilon}[X_r]} \epsilon_r(\xi) =: \epsilon_r^G$$

The ϵ -risk region covers the true risk region:

 $\mathbb{G}_{\beta}[X] \subseteq \mathbb{G}_{\beta}^{\epsilon}[X_r] \quad \text{ and } \quad \mathbb{G}_{\beta}[X_r] \subseteq \mathbb{G}_{\beta}^{\epsilon}[X_r]$

Risk regions for four different ROMs

New error bound for ROM-estimated $CVaR_{\beta}$

Theorem: The error between CVaR_{β} of the full-order model X and CVaR_{β} of the reduced-order model X_r is bounded as

$$\begin{split} |\mathsf{CVaR}_{\beta}[X] - \mathsf{CVaR}_{\beta}[X_r]| \\ &\leq \left(1 + \frac{\max\left\{\Pr\left[\{X = \mathsf{VaR}_{\beta}[X]\}\right], \, \Pr\left[\{X_r = \mathsf{VaR}_{\beta}[X_r]\}\right]\}\right\}}{1 - \beta}\right) \, \epsilon_r^G \\ &\leq \left(1 + \frac{1}{1 - \beta}\right) \, \epsilon_r^G. \end{split}$$

If X and X_r have c.d.f.'s that are continuous at ${\rm VaR}_\beta[X]$ and at ${\rm VaR}_\beta[X_r]$, respectively, then

$$\left|\mathsf{CVaR}_{\beta}[X] - \mathsf{CVaR}_{\beta}[X_r]\right| \leq \epsilon_r^G.$$

- Only need error ϵ_r^G in the ϵ -risk region $\mathbb{G}^{\epsilon}_{\beta}[X_r]$
- We do not need the error function $\epsilon_r(\xi)$ in all of Ξ

Error bound guides model selection

• Estimates of CVaR_{β} at level $\beta = 0.95$

• Maximum error in ROM ϵ -risk region $\widehat{\mathbb{G}}^{\epsilon}_{\beta}[X_r]$: $\widehat{\epsilon}^G_r$

	$\widehat{CVaR}^{MC}_\beta$	Abs error	Rel error (%)	$\widehat{\epsilon}_r^G$
HFM	53.94		—	_
ROM 1	361.40	307.47	570.05	776.00
ROM 2	44.80	9.14	16.94	24.47
ROM 3	49.91	4.02	7.46	9.04
ROM 4	53.87	0.07	0.13	0.96

• Note that $\left|\widehat{\operatorname{CVaR}}_{\beta}^{\mathsf{MC}}[X] - \widehat{\operatorname{CVaR}}_{\beta}^{\mathsf{MC}}[X_r]\right| \leq \widehat{\epsilon}_r^G$

Choice of ROM to sample from can be guided through error bound

What if we don't have a rigorous error bound $|X(\xi) - X_r(\xi)| \le \epsilon_r(\xi)$?

4) $CVaR_{\beta}$ estimation using ROMs + importance sampling

Importance sampling: A change of measure

- Define $\operatorname{supp}(\rho) := \{\xi \in \Xi \mid \rho(\xi) > 0\}.$
- Let φ be another density with $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\varphi)$.
- For any integrable function $g:\Xi\to\mathbb{R}$ and $w(\xi):=rac{
 ho(\xi)}{\varphi(\xi)}$ we have

$$\mathbb{E}_{\rho}[g] = \int_{\Xi} g(\xi) \ \rho(\xi) \ d\xi = \int_{\Xi} g(\xi) w(\xi) \ \varphi(\xi) \ d\xi = \mathbb{E}_{\varphi}[gw].$$

For CVaR_β, perform change of measure, and account for the change by re-weighting:

$$\mathsf{CVaR}_{\beta}[X] = \frac{1}{1-\beta} \int_{\widetilde{\Xi}} \mathbb{I}_{\mathbb{G}_{\beta}[X]}(\xi) X(\xi) w(\xi) \varphi(\xi) d\xi$$

Assumption: The support $\widetilde{\Xi}$ of the biasing density φ satisfies

$$\mathbb{G}_{\beta}[X] \subset \widetilde{\Xi}.$$

Optimal biasing density gives zero variance

Lemma: Under certain conditions, $\widehat{\text{CVaR}}^{\text{IS}}_{\beta}[X] \to \text{CVaR}_{\beta}[X]$ w.p. 1 as $n \to \infty$ and

$$\sqrt{n}\left(\widehat{\mathsf{CVaR}}_{\beta}^{\mathsf{IS}}[X] - \mathsf{CVaR}_{\beta}[X]\right) \Rightarrow \frac{\left(\mathbb{V}_{\varphi}[(X(\cdot) - \mathsf{VaR}_{\beta}[X])_{+} w(\cdot)]\right)^{1/2}}{1 - \beta} \mathcal{N}(0, 1).$$

Theorem: The optimal biasing density

$$\varphi^*(\xi) = \frac{\mathbb{I}_{\mathbb{G}_{\beta}[X]}(\xi) \left(X(\xi) - \mathsf{VaR}_{\beta}[X]\right) \rho(\xi)}{(1-\beta) \left(\mathsf{CVaR}_{\beta}[X] - \mathsf{VaR}_{\beta}[X]\right)}$$

results in zero "variance", i.e.,

$$\frac{\mathbb{V}_{\varphi}[(X(\cdot) - \mathsf{VaR}_{\beta}[X])_{+} w(\cdot)]}{n(1-\beta)^{2}} = 0.$$

• Usual problem: Optimal biasing density depends on $CVaR_{\beta}$, VaR_{β} which we want to compute. \Rightarrow But helps in finding a good biasing density which results in low variance

Approximation of the optimal IS density via ROMs possible

 \blacksquare Optimal biasing density φ^* motivates the initial choice

$$\varphi_1(\xi) = \frac{\mathbb{I}_{\mathbb{G}_\beta[X]}(\xi) \ \rho(\xi)}{1 - \beta}.$$

 \blacksquare Still depends in the risk region of the expensive X

• Use a ROM and ϵ -risk region to get

$$\varphi(\xi) := \frac{\mathbb{I}_{\mathbb{G}_{\beta}^{\epsilon}[X_r]}(\xi) \ \rho(\xi)}{\Pr[\mathbb{G}_{\beta}^{\epsilon}[X_r]]}.$$

• Since $\mathbb{G}_{\beta}[X] \subseteq \mathbb{G}_{\beta}^{\epsilon}[X_r]$: $\operatorname{supp}(\rho) = \widetilde{\Xi} = \mathbb{G}_{\beta}^{\epsilon}[X_r] \subseteq \operatorname{supp}(\varphi) = \Xi$

Theorem: IS with φ reduces variance compared to MC sampling with ρ by

$$\frac{\mathbb{V}_{\varphi}\left[\mathbb{I}_{\mathbb{G}_{\beta}[X]}(\cdot)\left(X(\cdot)-\mathsf{VaR}_{\beta}[X]\right)w(\cdot)\right]}{\mathbb{V}_{\rho}\left[\mathbb{I}_{\mathbb{G}_{\beta}[X]}(\cdot)\left(X(\cdot)-\mathsf{VaR}_{\beta}[X]\right)\right]} \leq \Pr\left[\mathbb{G}_{\beta}^{\epsilon}[X_{r}]\right].$$

Importance sampling gives accurate $CVaR_{\beta}$ estimates

- $m = 10^4$ ROM evaluations to explore risk region $\mathbb{G}^{\epsilon}_{\beta}[X_r]$
- Acceptance-rejection algorithm to get samples from biasing distribution
- All $\widetilde{\mathsf{CVaR}}^{\mathsf{IS}}_\beta[X]$ estimates use n=100 HFM samples, averaged over K=100 runs
- Reference $\text{CVaR}_{\beta}^{\text{ref}} = \widehat{\text{CVaR}}_{\beta}^{\text{MC}}[X] = 53.94$ from 10^4 HFM samples

$$\mathsf{MAE} = \frac{1}{K} \sum_{k=1}^{K} \left| \widehat{\mathsf{CVaR}}_{\beta}^{\mathsf{IS}^{(k)}}[X] - \mathsf{CVaR}_{\beta}^{\mathsf{ref}}[X] \right|, \quad \mathsf{MRE} = \frac{\mathsf{MAE}}{\left| \mathsf{CVaR}_{\beta}^{\mathsf{ref}}[X] \right|} \times 100\%$$

When used with IS, even inaccurate ROMs can give good estimates

	Av $\widehat{CVaR}^{IS}_{\beta}[X]$	MAE	MRE (%)
IS 1	54.02	1.99	3.70
IS 2	54.39	1.59	2.96
IS 3	53.74	1.20	2.23
IS 4	53.94	0.66	1.22

As expected, IS reduces the variance

Estimated variance reduction computed with $100 \mbox{ samples for IS densities } r=1,2,3,4.$

	$\widehat{\mathbb{V}_{\varphi}}[\widehat{CVaR}_{\beta}^{IS}[X]]/\widehat{\mathbb{V}_{\rho}}[\widehat{CVaR}_{\beta}^{MC}[X]]$	$\widehat{\Pr}[\mathbb{G}_{\beta}^{\epsilon}[X_r]]$
IS 1	0.2258	0.2463
IS 2	0.1519	0.1771
IS 3	0.0691	0.0967
IS 4	0.0214	0.0519

Recall theorem:

$$\frac{\mathbb{V}_{\varphi}\left[\mathbb{I}_{\mathbb{G}_{\beta}[X]}(\cdot)\left(X(\cdot)-\mathsf{VaR}_{\beta}[X]\right)w(\cdot)\right]}{\mathbb{V}_{\rho}\left[\mathbb{I}_{\mathbb{G}_{\beta}[X]}(\cdot)\left(X(\cdot)-\mathsf{VaR}_{\beta}[X]\right)\right]} \leq \Pr\left[\mathbb{G}_{\beta}^{\epsilon}[X_{r}]\right].$$

As ROMs become more accurate, $\epsilon_r \to 0$, and $\widehat{\Pr}[\mathbb{G}_{\beta}^{\epsilon}[X_r]] \to 1 - \beta = 0.05.$

Review and conclusion

Review:

- Showed that using ROMs to sample from for $CVaR_{\beta}$ computations is practical + established error bound
- Using ROMs together with importance sampling can produce efficient estimates (ROM only needs to identify risk-region correctly)

Conclusions:

- ROM only has to be accurate in *ϵ*-risk region ⇒ currently working on adaptive ROM construction to make method more efficient
- Computationally, investing in a ROM pays off (shown in paper)

M. Heinkenschloss, B. Kramer, T. Takhtaganov, K. Willcox. *Conditional-Value-at-Risk estimation via Reduced-Order Models.* Submitted. Available as ACDL Technical Report TR 2017-04.