An Adaptive PBDW approach to state estimation

Tommaso Taddei

Université Pierre et Marie Curie Laboratoire Jacques-Louis Lions

MOREPAS 2018 Nantes, France

April 11th 2018

Acknowledgments: Y Maday (UPMC, Brown), and AT Patera (MIT).

Formulation

Given a physical system, we wish to integrate

a best-knowledge model with uncertain parameters,

and M experimental observations

to estimate the state u^{true} over the domain $\Omega \subset \mathbb{R}^d$.

Given a physical system, we wish to integrate

a best-knowledge model with uncertain parameters, $G^{\mathrm{bk},\mu}(u^{\mathrm{bk}}(\mu)) = 0,$ $\mu \in \mathcal{P}^{\mathrm{bk}} \text{ uncertain model parameters,}$ well-posed over $\Omega^{\mathrm{bk}} \supset \Omega$;

and M experimental observations

$$y_m = \ell_m^o(u^{ ext{true}}) + \epsilon_m, \ m = 1, \dots, M$$

 $\ell_1^o, \dots, \ell_M^o \text{ linear functionals,}$
 $\mathcal{L}_M = [\ell_1^o, \dots, \ell_M^o]$

to estimate the state u^{true} over the domain $\Omega \subset \mathbb{R}^d$.

Decomposition of the true field

Estimate ($\mu^{\text{true}}, \eta^{\text{true}}$): Partial Spline Model (Wahba, 1990)

Reformulation of the PSM: rank-N approximations

Substitute $u^{\mathrm{bk}}(\mu)$ with the rank-N approximation: $u^{\mathrm{bk}}_{N}(x,\mu) := \sum_{n=1}^{N} \alpha_{n}(\mu)\zeta_{n}(x), \quad \mu \in \mathcal{P}^{\mathrm{bk}}, \ x \in \Omega \subset \Omega^{\mathrm{bk}}.$

$$\min_{(\mu,\eta)\in\mathcal{P}^{\mathrm{bk}\times\mathcal{U}}} \xi \|\eta\|^2 + V_M \left(\mathcal{L}_M \left(\sum_{n=1}^N \alpha_n(\mu)\zeta_n + \eta \right) - \mathbf{y} \right)$$

state estimate: $u_{\xi}^{\star} = \sum_{n=1}^N \alpha_n(\mu_{\xi}^{\star})\zeta_n + \eta_{\xi}^{\star}.$

Reformulation of the PSM: rank-N approximations

Substitute $u^{bk}(\mu)$ with the rank-N approximation: $u_N^{bk}(x,\mu) := \sum_{n=1}^N \alpha_n(\mu)\zeta_n(x), \quad \mu \in \mathcal{P}^{bk}, \quad x \in \Omega \subset \Omega^{bk}.$ Define $\Phi_N := \{ [\alpha_1(\mu), \dots, \alpha_N(\mu)] : \mu \in \mathcal{P}^{bk} \} \subset \mathbb{R}^N.$ Minimize over $(\alpha, \eta) \in \Phi_N \times \mathbb{R}^N$

$$\min_{(\alpha,\eta)\in\Phi_N\times\mathcal{U}} \xi \|\eta\|^2 + V_M \left(\mathcal{L}_M \left(\sum_{n=1}^N \alpha_n \zeta_n + \eta \right) - \mathbf{y} \right)$$

state estimate: $u_{\xi}^{\star} = \sum_{n=1}^N \alpha_{\xi,n}^{\star} \zeta_n + \eta_{\xi}^{\star}.$

Relaxation: $PSM \rightarrow PBDW$

Introduce the approximation of Φ_N , $\widetilde{\Phi}_N \subset \mathbb{R}^N$. Then, obtain the **PBDW statement**:

$$\min_{(\boldsymbol{\alpha},\eta)\in\widetilde{\boldsymbol{\Phi}}_{N}\times\mathcal{U}} \xi \|\eta\|^{2} + V_{M}\left(\mathcal{L}_{M}\left(\sum_{n=1}^{N}\alpha_{n}\zeta_{n}+\eta\right)-\mathbf{y}\right)$$

Relaxation: $\mathsf{PSM} \to \mathsf{PBDW}$

Introduce the approximation of Φ_N , $\Phi_N \subset \mathbb{R}^N$. Then, obtain the **PBDW statement**:

$$\min_{(\boldsymbol{\alpha},\eta)\in\widetilde{\boldsymbol{\Phi}}_{\boldsymbol{N}}\times\mathcal{U}} \xi \|\eta\|^2 + V_M \left(\mathcal{L}_M\left(\sum_{n=1}^N \alpha_n \zeta_n + \eta\right) - \mathbf{y}\right)$$

The Partial Spline Model is non-convex, and highly nonlinear.

If Φ_N is convex, the PBDW statement is a convex relaxation of the PSM.

If Φ_N is a convex polytope and $V_M(\mathbf{w}) = \mathbf{w}^T \mathbb{O} \mathbf{w}$, the PBDW statement is a QP.

$\mathsf{PSM}\to\mathsf{PBDW}:$ the role of MOR

PBDW relies on a *N*-term approximation of u^{bk} : $u^{bk}(x,\mu) \approx \sum_{n=1}^{N} \alpha_n(\mu) \zeta_n(x) \quad \forall \mu \in \mathcal{P}^{bk}, \ x \in \Omega,$

where $N \leq M$ due to stability issues.

MOR provides efficient tools for data compression.

$\mathsf{PSM}\to\mathsf{PBDW}:$ the role of MOR

PBDW relies on a *N*-term approximation of u^{bk} : $u^{bk}(x,\mu) \approx \sum_{n=1}^{N} \alpha_n(\mu) \zeta_n(x) \quad \forall \mu \in \mathcal{P}^{bk}, \ x \in \Omega,$

where $N \leq M$ due to stability issues.

MOR provides efficient tools for data compression.

Data compression: given the bk manifold

 $\mathcal{M}^{\mathrm{bk}} = \{ u^{\mathrm{bk}}(\mu) |_{\Omega} : \mathcal{G}^{\mathrm{bk},\mu}(u^{\mathrm{bk}}(\mu)) = 0, \ \mu \in \mathcal{P}^{\mathrm{bk}} \}$

find a *background* space $\mathcal{Z}_N = \operatorname{span} \{\zeta_n\}_{n=1}^N$ s.t.

 $\sup_{\mu \in \mathcal{P}^{\mathrm{bk}}} \inf_{z \in \mathcal{Z}_{N}} \| u^{\mathrm{bk}}(\mu) - z \| \text{ is small.}$

PBDW formulation: contribution and challenges

Main features

Two-level mechanism to accomodate parametric and non-parametric model uncertainty.

Use of MOR to generate a linear surrogate $\mathcal{Z}_N =$ span $\{\zeta_n\}_{n=1}^N$ of $\mathcal{M}^{\mathrm{bk}} = \{u^{\mathrm{bk}}(\mu')|_{\Omega} : \mu' \in \mathcal{P}^{\mathrm{bk}}\}.$

PBDW formulation: contribution and challenges

General formulation:

$$\min_{(\boldsymbol{\alpha},\eta)\in\widetilde{\Phi}_{N}\times\mathcal{U}}\xi\|\eta\|^{2}+V_{M}\left(\mathcal{L}_{M}\left(\sum_{n=1}^{N}\alpha_{n}\zeta_{n}+\eta\right)-\mathbf{y}\right)$$

Challenges and open questions Choice of V_M , $(\mathcal{U}, \|\cdot\|)$, ξ \leftrightarrow model selection (Machine Learning) Choice of $\mathcal{Z}_N = \operatorname{span} \{\zeta_n\}_{n=1}^N$ $\Omega = \Omega^{\mathrm{bk}} \leftrightarrow \operatorname{monolithic} \operatorname{MOR}$ $\Omega \subset \Omega^{\mathrm{bk}} \leftrightarrow \operatorname{component-based} \operatorname{MOR}$

Choice of Φ_N .

Maday, Patera, Penn, Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, IJNME, 2015

Maday, Patera, Penn, Yano, *PBDW state estimation: Noisy observations;* configuration-adaptive background spaces; physical interpretations, M2AN, 2015.

Binev, Cohen, Dahmen, DeVore, Petrova, Wojtaszczyk, *Data assimilation in reduced modeling*, JUQ, 2017.

Taddei, An adaptive parametrized-background data-weak approach to variational data assimilation, M2AN, 2017

Taddei, Patera, A localization strategy for Data Assimilation; application to state estimation and parameter estimation, SISC, (accepted).

Maday, Taddei, Adaptive PBDW approach to state estimation: noisy observations; user-defined update spaces., (submitted).

Binev, Cohen, Mula, Nichols, *Greedy algorithms for optimal measurements selection in state estimation using reduced models*, (submitted).

Hammond, Chakir, Bourquin, Maday, *PBDW: a non-intrusive reduced basis data assimilation method and its application to outdoor air quality models*, (submitted).

Agenda of the talk

We consider the formulation $\min_{(z,\eta)\in\mathcal{Z}_N\times\mathcal{U}} \xi \|\eta\|^2 + \frac{1}{M} \sum_{m=1}^M \left(\ell_m^o(z+\eta) - y_m\right)^2,$

which corresponds to $\widetilde{\Phi}_N = \mathbb{R}^N$, $V_M = \frac{1}{M} \| \cdot \|_2^2$.

Topic of the talk: choice of $(\mathcal{U}, \|\cdot\|)$. Hypothesis: $\ell_m^o(z) = 0, \ z \in \mathcal{Z}_N \Leftrightarrow z \equiv 0$ $(\mathcal{Z}_N, \mathcal{L}_M)$ - unisolvency

Maday, Taddei, *Adaptive PBDW approach to state estimation: noisy observations; user-defined update spaces,* (submitted).

Choice of ($\mathcal{U}, \|\cdot\|)$

Choice of $(\mathcal{U}, \|\cdot\|)$: variational update

Choose $\mathcal{U} = \mathcal{X}$, $\|\cdot\| = \|\cdot\|_{\mathcal{X}}$ $(\mathcal{X} = H^1(\Omega), V_{\text{div}}, ...)$ $\Rightarrow \eta_{\xi}^*$ belongs to $\mathcal{U}_M = \text{span}\{R_{\mathcal{X}}\ell_m^o\}_{m=1}^M$ $(R_{\mathcal{X}}\ell_m^o, \mathbf{v})_{\mathcal{X}} = \ell_m^o(\mathbf{v}) \ \forall \ \mathbf{v} \in \mathcal{X}$

Choice of $(\mathcal{U}, \|\cdot\|)$: variational update

Choose $\mathcal{U} = \mathcal{X}$, $\|\cdot\| = \|\cdot\|_{\mathcal{X}}$ $(\mathcal{X} = H^1(\Omega), V_{\text{div}}, \ldots)$ $\Rightarrow \eta_{\xi}^{\star}$ belongs to $\mathcal{U}_M = \text{span}\{R_{\mathcal{X}}\ell_m^o\}_{m=1}^M$ $(R_{\mathcal{X}}\ell_m^o, \mathbf{v})_{\mathcal{X}} = \ell_m^o(\mathbf{v}) \ \forall \ \mathbf{v} \in \mathcal{X}$

Originally proposed in [Maday et al., 2015]

The approximation properties of \mathcal{U}_M depend on $\|\cdot\|_{\mathcal{X}}$ and on $\{\ell^o_m\}_{m=1}^M$

Construction of \mathcal{U}_M requires the solution to M Riesz problems.

Choice of $(\mathcal{U}, \|\cdot\|)$: user-defined update

Choose $\mathcal{U} = \mathcal{U}_M = \operatorname{span}\{\psi_m\}_{m=1}^M \subset \mathcal{X}, \|\cdot\| = \|\cdot\|_{\mathcal{X}} \text{ s.t.}$ $\ell_m^o(\psi) = 0, \psi \in \mathcal{U}_M \Leftrightarrow \psi \equiv 0 \quad ((\mathcal{U}_M, \mathcal{L}_M) - unisolvency)$

Choice of $(\mathcal{U}, \|\cdot\|)$: user-defined update

Choose $\mathcal{U} = \mathcal{U}_M = \operatorname{span}\{\psi_m\}_{m=1}^M \subset \mathcal{X}, \|\cdot\| = \|\cdot\|_{\mathcal{X}} \text{ s.t.}$ $\ell_m^o(\psi) = 0, \psi \in \mathcal{U}_M \Leftrightarrow \psi \equiv 0 \quad ((\mathcal{U}_M, \mathcal{L}_M) - unisolvency)$

The unisolvency condition guarantees wellposedness. ψ_1, \ldots, ψ_M are chosen based on approximation considerations.

 ψ_1, \ldots, ψ_M might or might not depend on the choice of $\|\cdot\|_{\cdot}$

Practical choices of ψ_1, \ldots, ψ_M for local measurements

Given functionals of the form $\ell_m^o = \ell(\cdot, x_m^o, r_w)$,

$$\ell(\mathbf{v}, \bar{\mathbf{x}}, \mathbf{r}_{\mathrm{w}}) = \int_{\Omega} \omega\left(\frac{\|\mathbf{x} - \bar{\mathbf{x}}\|_{2}}{\mathbf{r}_{\mathrm{w}}}\right) \mathbf{v}(\mathbf{x}) \, d\mathbf{x},$$
$$\ell_{m}^{o} \to \delta_{\mathbf{x}_{m}^{o}} \text{ for } \mathbf{r}_{\mathrm{w}} \to 0^{+}$$

possible choices are

- 1. $\psi_m(\cdot) = \Phi(\|\cdot x_m^o\|_2)$ where Φ is a PD RBF, or no need for solving *M* offline Riesz problems,
- 2. $\psi_m(\cdot) = R_{\mathcal{X}}\ell(\cdot, x_m^o, R_w)$ where $R_w > r_w$. simple treatment of strong BCs

Equivalence between variational and user-defined updates

Define $\mathcal{I}_{M}: \mathcal{X} \to \mathcal{U}_{M} \text{ s.t. } \mathcal{L}_{M}(\mathcal{I}_{M}(v)) = \mathcal{L}_{M}(v) \ \forall v \in \mathcal{X}$

Proposition: let $\mathcal{U}_{M} = \operatorname{span}\{\psi_{m}\}_{m}$ satisfy unisolvency condition. Then, PBDW solution solves: $\min_{\substack{(z,\eta)\in\mathcal{Z}_{N}\times\mathcal{X}}} \xi |||\eta|||^{2} + V_{M}(\mathcal{L}(z+\eta) - \mathbf{y})$ where $|||u|||^{2} = ||\mathcal{I}_{M}(u)||^{2}_{\mathcal{X}} + ||u - \mathcal{I}_{M}(u)||^{2}_{\mathcal{X}}$ is an equivalent norm for \mathcal{X} .

Variational approach: choose $(\mathcal{X}, \|\cdot\|_{\mathcal{X}}) \Rightarrow \mathcal{U}_{M}$; User-defined approach: choose $\mathcal{U}_{M} \Rightarrow (\mathcal{X}, \|\|\cdot\|)$. link with kernel methods for regression

Error analysis for perfect measurements

Introduce

the inf-sup constant
$$\beta_{N,M} = \inf_{z \in \mathcal{Z}_N} \sup_{v \in \mathcal{U}_M} \frac{((z,v))}{\|z\|} \|v\|$$
, and
the Lebesgue constant $\|\mathcal{I}_M\|_{\mathcal{L}(\mathcal{X})} = \sup_{v \in \mathcal{X}} \frac{\|\mathcal{I}_M(v)\|_{\mathcal{X}}}{\|v\|_{\mathcal{X}}}$.
 $(= 1 \text{ for } \mathcal{U}_M = \operatorname{span}\{R_{\mathcal{X}}\ell_m^o\}_m)$
Then,
 $\|u^{\operatorname{true}} - u_{\xi}^{\star}\|_{\mathcal{X}} \le C(\xi) + \frac{\sqrt{4 + 6}\|\mathcal{I}_M\|_{\mathcal{L}(\mathcal{X})}^2}{\beta_{N,M}} \times \inf_{\substack{z \in \mathcal{Z}_N \\ q \in \mathcal{U}_M \cap \mathcal{Z}_N^{\perp,\|\cdot\|}}} \|u^{\operatorname{true}} - z - q\|_{\mathcal{X}}$
where $C(\xi) \to 0$ as $\xi \to 0^+$.

,

Numerical results

A synthetic example in AcousticsA synthetic example in Fluid Mechanics

Numerical results

A synthetic example in AcousticsA synthetic example in Fluid Mechanics

An acoustic model problem

Let $u_g(\mu)$ be the solution to $\begin{cases} -(1+\epsilon\mu\mathrm{i})\,\Delta u_g(\mu) - \mu^2\,u_g(\mu) = \mu(x_1^2 + e^{x_2}) + \mu g \quad \mathrm{in}\,\Omega\\ \partial_n u_g(\mu) = 0 \quad \mathrm{on}\,\partial\,\Omega \end{cases}$ where $\Omega = (0, 1)^2$, $\epsilon = 10^{-2}$. Bk model: $u^{bk}(\mu) = u_{g_0}(\mu), \ \mu \in \mathcal{P}^{bk} = [2, 10] \ g_0 \equiv 0.$ True state: $u^{\text{true}} = u_{\bar{g}}(\mu^{\text{true}}),$ $\mu^{\text{true}} \in \mathcal{P}^{\text{bk}}, \ \bar{g}(x) = 0.5(e^{x_1} + \cos(1.3\pi x_2)).$

An acoustic model problem

Let $u_g(\mu)$ be the solution to $\begin{cases} -(1+\epsilon\mu\mathrm{i})\,\Delta u_g(\mu) - \mu^2\,u_g(\mu) = \mu(x_1^2 + e^{x_2}) + \mu g \quad \mathrm{in}\,\Omega\\ \partial_n u_g(\mu) = 0 \quad \mathrm{on}\,\partial\,\Omega \end{cases}$ where $\Omega = (0, 1)^2$, $\epsilon = 10^{-2}$. Bk model: $u^{bk}(\mu) = u_{g_0}(\mu), \ \mu \in \mathcal{P}^{bk} = [2, 10] \ g_0 \equiv 0.$ True state: $u^{\text{true}} = u_{\overline{e}}(\mu^{\text{true}}),$ $\mu^{\text{true}} \in \mathcal{P}^{\breve{b}\breve{k}}, \ \bar{g}(x) = 0.5(e^{x_1} + \cos(1.3\pi x_2)).$ **Observations:** $y_m = \text{Gauss}(u^{\text{true}}; x_m^o, r_w) + \epsilon_m$ Gauss $(v; \bar{x}, r_{w}) = C(x_{m}^{o}) \int_{\Omega} e^{-\frac{1}{2r_{w}^{2}} ||x-\bar{x}||_{2}^{2}} v(x) dx$

Centers: $\{x_m^o\}_m$ deterministic (SGreedy+approx), **Choice of** ξ : holdout validation $\{x_i^{o}\}_i$ drawn randomly (uniform), I = M/2; **Background:** $\{\mathcal{Z}_N\}_N$ generated using the weak-Greedy algorithm; Update space: $\{\psi_m(\cdot) = \phi_i(\|\cdot - x_m^o\|_2)\}_m, i = 1, 2$ $\phi_1(r) = (1-r)^4_{\perp}(4r+1)$, csRBF $\phi_2(r) = \frac{1}{(1+r^2)^2}$ (inverse-multiquadrics)

G Rozza, DBP Huynh, AT Patera, 2008; H Wendland, 2004.

Details (II): measurement noise

Observations:
$$y_m = \ell_m^o(u^{\text{true}}) + \epsilon_m, \ \epsilon_m = \epsilon_m^{\text{re}} + i\epsilon_m^{\text{im}}, \ \epsilon_m^{\text{re}} \stackrel{\text{id}}{\sim} \mathcal{N}(0, \sigma_{\text{re}}^2), \quad \epsilon_m^{\text{im}} \stackrel{\text{id}}{\sim} \mathcal{N}(0, \sigma_{\text{im}}^2);$$

 $\sigma_{\text{re}} = \frac{1}{\text{SNR}} \times \text{std} \left(\{ \text{Re} \left(\ell_m^o(u^{\text{true}}) \right) \}_{m=1}^M \right); \ \sigma_{\text{im}} = \frac{1}{\text{SNR}} \times \text{std} \left(\{ \text{Im} \left(\ell_m^o(u^{\text{true}}) \right) \}_{m=1}^M \right).$

Details (II): measure of performance

$$egin{split} \mathcal{E}_{ ext{avg}}^{ ext{rel}} &= rac{1}{|\mathcal{P}_{ ext{train}}^{ ext{bk}}|} \; \sum_{\mu \in \mathcal{P}_{ ext{train}}^{ ext{bk}}} \; rac{\|u^{ ext{true}}(\mu) - u_{\xi}^{\star}(\mu)\|_{L^2(\Omega)}}{\|u^{ ext{true}}(\mu)\|_{L^2(\Omega)}}, \end{split}$$

 $\mathcal{P}_{\text{train}}^{\text{bk}} \subset [2, 10], |\mathcal{P}_{\text{train}}^{\text{bk}}| = 10.$

If SNR < ∞ (noisy measurements), computations of $\|u^{\text{true}}(\mu) - u_{\xi}^{\star}(\mu)\|_{L^{2}(\Omega)}$ are averaged over K = 35 trials.

M- convergence: (SNR = ∞ , N = 6)

Use of inverse-multiquadrics significantly improves performance, particularly for small values of $r_{\rm w}$.

M- convergence: (SNR $< \infty, N = 4, r_{\rm w} = 0.01$)

Use of inverse-multiquadrics significantly improves performance also for noisy measurements.

Numerical results

A synthetic example in AcousticsA synthetic example in Fluid Mechanics

A Fluid Mechanics problem

Centers: $\{x_m^o\}_m$ deterministic (SGreedy+approx),

- Choice of $\xi: \xi \to 0^+$
- **Background:** $\{\mathcal{Z}_N\}_N$ generated using POD
- Update space: $\{\psi_{2m-i}(\cdot) = R_{\mathcal{X}} \text{Gauss}(\cdot \cdot e_i, x_m^o, R_w)\}_{m=1,...,M, i=1,2,}$ $\mathcal{X} = \{v \in [H^1(\Omega)]^2 : \nabla \cdot v = 0, v|_{\Gamma_{\text{hom}}} = 0\}$ $\| \cdot \|_{\mathcal{X}} = \|\nabla \cdot \|_{L^2(\Omega)}.$

 $\psi_1, \ldots, \psi_{2M}$ are divergence-free and satisfy homogeneous conditions on $\Gamma_{\text{hom}} = \partial \Omega \setminus (\Gamma_{\text{in}} \cup \Gamma_{\text{out}}).$

M- convergence: (SNR = ∞ , N = 5, $r_{\rm w}$ = 0.01)

Increasing $R_{\rm w}$ leads to an improvement in accuracy.

Conclusions

PBDW is a MOR approach for the efficient integration of parametrized mathematical models, and experimental observations for state estimation. PBDW is a MOR approach for the efficient integration of parametrized mathematical models, and experimental observations

for state estimation.

MOR allows the efficient treatment of parametrized mathematical models.

User-defined updates provide the PBDW formulation with additional flexibility.

Thank you for your attention!

Backup slides

Scattered data approximation with RBFs¹

- 1. Choose the PD RBF $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$
- 2. Characterize the properties of $\mathcal{X} = \mathcal{N}_{\Phi}$ for analysis.

Similarity: infinite-dimensional formulation used only for analysis.

Key difference: $\mathcal{X} = \mathcal{N}_{\Phi}$ and its inner product do **not** depend on x_1^o, \ldots, x_M^o .

¹PBDW and RBF scattered data approximation are equivalent for $\mathcal{Z}_N = \emptyset, \{\ell_m^o = \delta_{x_m^o}\}_{m=1}^M$.