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Introduction

Overview of the physical problems
The interest is in viscous steady and unsteady parametrized incompressible
flows

Figure: Naval Eng. Figure: Aeronautics Figure: Industrial App.

Possible applications can be found in naval and nautical engineering, aeronautical
engineering and industrial engineering.

In general any application dealing with incompressible fluid dynamic problems that
has the response depending on parameter changes (Reynolds Number, Grashof
Number, Geometrical parameters ..)
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Introduction

Why Finite Volumes?
The finite element method is nowadays the standard in the reduced order
modelling community so why to use a different discretisation technique?

It became the standard for real world applications in several engineering fields
(Aeronautics, Industrial flows, Automotive, Naval Engineering)

One can find well developed open source libraries, OpenFOAM is today
probably the most spread CFD open-source solver.

For increasing Reynolds numbers there are less problems concerning stability
and several turbulence models are already available.

More difficulties into the affine decomposition of the differential operators.

The ROM methodology, mainly developed for FEM solvers, needs to be
adapted.

The geometrical parametrization includes many more difficulties respect to a
finite element setting
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Introduction

Issues in FV and Reduced Order Modelling
To export the ROM methodology, mainly developed for finite element solvers, into
a Finite Volume setting several issues need to be tackled.

• Adapt ROM methods to finite volume approximations [Hassdonk and
Ohlberger (2008)].

• Implement efficient POD-Galerkin strategies [Lorenzi et al (2016)].

• Geometrical Parametrization for non-linear problems [Drohmann et al (2009)].

• Stabilization issues for incompressible flows [Rozza et al., Noack, Akhtar..].

• Stabilization for compressible flows and long time intervals [Carlberg et al
(2017) , Balajewicz et al. (2016))].

• Develop ROMs beyond the laminar assumption.
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Introduction

Reduced Order Modelling
Most of the problems require high dimensional parametrized simulations.

POD
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fields

Galerkin projection of the 
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The Full Order Model

Governing Equations - The incompressible Navier Stokes Equations
The considered system of PDEs are the unsteady parametrized incompressible
Navier Stokes Equations.

ut + ∇ · (u ⊗ u)−∇ · 2ν∇su = −∇p in Q,
∇ · u = 0 in Q,
u(t, x) = f (x) on ΓIn × [0,T ],
u(t, x) = 0 on Γ0 × [0,T ],
(ν(µ)∇u − pI)n = 0 on ΓOut × [0,T ],
u(0, x) = k(x) in T0,

(1)

with Q = Ω× [0,T ] ⊂ Rd × R+ with d = 2, 3 and the boundary is considered to
be ∂Ω = ∂Ω,in ∪ ∂Ω,0 ∪ ∂Ω,out

The governing equations are discretised using a Finite
Volume approach. Each term is integrated over a control
volume and transformed into a surface integral making use
of the Green’s theorem:∫

Ω
∇ · udv =

∫
∂Ω

u · nds =
NSf∑
i=1

ufi · Sfi (2)

f

Sf1

F1

f

C

c1u

f1u

cu
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The Full Order Model

The Finite Volume Method
In particular the high fidelity simulations have been carried out using the finite
volume solver OpenFOAM R©.

The term ufi can be determined using a variety of schemes. The convection term,
in order to ensure stability needs particular care:
• The diffusion term is evaluated using a central differencing scheme.

• The convection term is evaluated using an upwind scheme with
non-orthogonal correction.

• The gradient term is evaluated using a central differencing scheme.

• The time integration is performed using a backward Euler method.

The discretisation permits to transform the system of PDEs into a system of
algebraic non-linear equations:

A(x)x = b (3)
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The Reduced Order Model

Generation of the POD spaces
There are several techniques to obtain the hierarchical reduced order spaces later
used for the Galerkin projection:
• POD
• RB with greedy sampling algorithm
The reduced order space Vu and Qp are constructed using a SVD on the snapshots
matrices of velocity and pressure:

U ′ = [u′(t1), u′(t2), ..., u′(tn)] with u′(t) = u(t)− u (4)
P = [p(t1), p(t2), ..., p(tn)] (5)

U ′ = WuΣuVuT , Wp = [ϕ1,ϕ2, ...,ϕn], Σu
ii = λu

i (6)
P = WpΣpVpT , Wp = [χ1,χ2, ...,χn], Σp

ii = λp
i (7)

We can truncate the dimension of the reduced basis space looking at the
eigenvalues and we can finally construct the reduced basis spaces for the Galerkin
projection:

VNu = span(ϕ1,ϕ2, ...,ϕNu ) QNp = span(χ1,χ2, ...,χNp )
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The Reduced Order Model

Galerkin Projection
After the reduced basis are set one can perform a Galerkin projection onto the RB
spaces:{

(ut + ∇ · (u ⊗ u)−∇ · 2ν∇su + ∇p,ϕ)L2(Ω) = 0 ∀ϕ ∈ VNu

(∇ · u,χ)L2(Ω) = 0 ∀χ ∈ QNp

(8)

and the pressure and velocity fields are approximated using the the POD modes for
velocity and pressure respectively.

ur ≈
Nr

u∑
i=1

ai (t, µ)ϕi (x), pr ≈
Nr

p∑
i=1

bi (t, µ)χi (x). (9)

The system can be recast in matrix form with the reduced matrices.
Mr ȧ − νAr a + Cr (a)a + Br b = 0

Pr a = 0,
(10)

where the terms inside equation (10) are evaluated with:

Mrij = 〈ϕi ,ϕj 〉L2(Ω) , Arij = 〈ϕi ,∇ · 2∇sϕj 〉L2(Ω) ,
Brij = 〈ϕi ,∇χj〉L2(Ω) , Prij = 〈χi ,∇ · ϕj 〉L2(Ω).

(11)
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The Reduced Order Model

In order to ensure an efficient online/offline decoupling the reduced matrices must
be precomputed during the offline stage

Mr ȧ − νAr a + Cr (a)a + Br b = 0
Pr a = 0,

(12)

with this regard the non-linear convective term Cr (a) needs particular attention.
The idea here is to use a third order tensor Cr

Crijk = 〈ϕi ,∇ · (ϕj ⊗ ϕk)〉L2(Ω). (13)

and at each fixed point iteration of the solution procedure, each entry of the
contribution to the reduced residual given by the convective term Rr

c = Cr (a)a,
can be computed with:

Rr
ci = (Cr (a)a)i = aTCri•• a. (14)

Also other approaches are possible such as empirical interpolation, gabby POD,...
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The Reduced Order Model

The resulting system of non-linear ODEs
The Galerkin projection gives rise to a non-linear system of ODE’s{

ȧ = νAr a − aTCr a − Br b
Pr a = 0

(15)

In the Galerkin projection there is also the gradient of pressure:

(ϕ,∇p)L2(Ω) = −
∫

Ω
p(∇ · ϕ)dv +

∫
∂Ω

p(ϕ · n)ds (16)
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The Reduced Order Model

The resulting system of non-linear ODEs
The Galerkin projection gives rise to a non-linear system of ODE’s{

ȧ = νAr a − aTCr a −��Br b
���

�Pr a = 0
(15)

In the Galerkin projection there is also the gradient of pressure:

(((
((((

(((
((((

(((
(((

(ϕ,∇p)L2(Ω) = −
∫

Ω
p(∇ · ϕ)dv +

∫
∂Ω

p(ϕ · n)ds (16)

This term is on most of the cases numerically zero so it is neglected and only the
momentum equation, without the pressure term is solved.

In many applications the pressure is the field in which we are interested
(Fluid-Structure interaction problems, Evaluation of drag and lift forces)
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Issues on stability

Pressure reconstruction and stability

Using the standard Navier-Stokes equation the online Inf-Sup condition is not
anymore satisfied.

Pressure reconstruction and inf-sup condition

• Reconstruction using a Poisson equation for pressure [Akhtar et al. TCFD
(2009), Noack et al. JFM (2005)]

• Online Inf-Sup approximation [Rozza and Veroy, CMAME (2007)]Rozza et al,
Numerische Mathematik(2013)][ Ballarin et al. IJNME (2015)]

• Residual-based stabilization [Caiazzo, Iliescu et al. JCP(2013)]

• Petrov-Galerkin projection [Carlberg et al., IJNME (2011)][Dahmen et al.,
ESAIM: M2AN (2014)][Abdulle and Budác̆, CRAS (2015)]
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The Poisson Equation for Pressure

• One possible way to reconstruct the pressure is to exploit a Poisson equation
for pressure obtained taking the divergence of the Momentum equation and
exploiting the divergence-free constraint.

ut + ∇ · (u ⊗ u)−∇ · 2ν∇su = −∇p in Q
∆p = −∇ · (∇ · (u ⊗ u)) in Q,
u(t, x) = 0 on Γ0 × [0,T ],
u(t, x) = f (x) on ΓIn,
∂p
∂n = −νn · (∇×∇× u)− n · ft on Γ.

(17)

The resulting equations can be then projected onto the reduced basis spaces of
velocity and pressure.

〈ϕi , ut + ∇ · (u ⊗ u) + ∇p −∇ · 2ν∇su〉L2(Ω) = 0, (18a)
〈∇χi ,∇p〉L2(Ω) + 〈∇χi ,∇ · (u ⊗ u)〉L2(Ω)

− ν〈n ×∇χi ,∇× u〉Γ − 〈χi , n · ft〉Γ = 0.
(18b)

Where ur and pr are the reduced order approximation of velocity and pressure:

u ≈ ur = uDϕL +
Nu∑
i=1

ai (t)ϕi (x) (19) pr =
Np∑
i=1

bi (t)χi (x) (20)
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The Poisson Equation for Pressure

The Poisson equation for pressure could be exploited in different ways [Caiazzo,
Iliescu et al. JCP(2013)]:
• A posteriori reconstruction of the pressure using the velocities ROM solution
• Projection of the Poisson equation onto the POD pressure space

〈ϕi , ut + ∇ · (u ⊗ u) + ∇p −∇ · 2ν∇su〉L2(Ω) = 0, (21a)
〈∇χi ,∇p〉L2(Ω) + 〈∇χi ,∇ · (u ⊗ u)〉L2(Ω)

− ν〈n ×∇χi ,∇× u〉Γ − 〈χi , n · ft〉Γ = 0.
(21b)

Mr ȧ − νAr a + aTCra + Br b = 0, (22a)

Dr b + aTGr a − νNr a − Fr = 0. (22b)

Drij = 〈∇χi ,∇χj〉L2(Ω) ,
Gr ijk = 〈∇χi ,∇ · (ϕj ⊗ ϕk)〉L2(Ω),

(23)

Nrij = 〈n ×∇χi ,∇× ϕj 〉Γ,
Fri = 〈χi , n · ft〉Γ.

(24)
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The Supremizer Approach

We know that in a Galerkin approach to ensure the solvability and stability of the
problem the reduced basis spaces must fulfill the LBB parametrized inf-sup
condition.

inf
q∈Q

sup
v∈V

b(q, v ;µ)
‖q‖Q ‖v‖V

= β(µ) > 0 (25) b(q, v) =
∫

Ω
q∇ · vdx (26)

Normally the resulting spaces obtained with a POD or a Reduced Basis approach
do not fulfil this condition. In order to fulfil this condition at reduced order level a
supremizer problem is solved.{

∆s = −∇p in Ω
s = 0 on ∂Ω

(27)

where p is a general pressure mode used to create the reduced basis space.

Supremizer enrichment
The supremizer is the element, that given a certain q ∈ Q satisfies the Inf-Sup
condition.
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The Supremizer Approach

It is possible to use different approaches to stabilize the problem: an exact
approach and an approximated one.
In the exact one the supremizer problem is solved for each pressure mode of the
pressure POD space: {

∆s = −∇χ in Ω, ∀χ ∈ QNp

s = 0 on ∂Ω
(28)

And the supremizer space is constructed:

Ss = [s(χ1), s(χ2), ..., s(χNp )] (29)

In this way, if we add a supremizer mode for each pressure mode it is possible to
show that the reduced inf-sup condition is automatically met.
The resulting supremizer solutions are added to the velocity space and the enriched
velocity space reads:

Ls = [s1, . . . , sNr
s
] ∈ RNh

u×Nr
s ,

Ṽu = [ϕ1, . . . ,ϕNr
u
]⊕ [s1, . . . , sNr

s
] ∈ RNh

u×(Nr
u+Nr

s ).
(30)
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The Supremizer Approach

Another way is to use an approximated approach. The supremizer problem is solved
for each pressure snapshots to get a snapshots matrix of supremizer solutions:{

∆s = −∇p in Ω, ∀p ∈ P
s = 0 on ∂Ω

(31)

A supremizer snapshots matrix is constructed:

Ss = [s(p1), s(χ2), ..., s(pNp )] (32)

A basis for the supremizer space can be constructed using a POD approach and
we can truncate the basis retaining only the first Ns energetic modes:

Vs = span{ψ1, .., ψNs} (33)
The final enriched velocity space Ṽu will be then formed by the first Nu velocity
modes and Ns supremizer modes

Ṽu = span{ϕ1, ...,ϕNu} ⊕ span{ψ1, ..,ψNs} (34)
It has been heuristically verified that a number of supremizer modes equal or
bigger respect to the number of pressure modes is usually enough to met the
inf-sup condition.
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Numerical examples

The lid driven cavity problem
The first proposed benchmark consists into the well known lid driven cavity
problem:

ΓD Γ0
u u = (1, 0) u = (0, 0)
p ∇p · n = 0 ∇p · n = 0

The mesh is structured and counts 40000 quadrilateral cells, 200 on each
dimension of the square. The kinematic viscosity is equal to ν = 1× 10−4m2/s
that leads to a Reynolds number of 10000. In this case no parametrisation is
introduced.
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Numerical examples
Comparison of the velocity and pressure fields for high fidelity, SUP-ROM and PPE-ROM.
The fields are depicted for different time instant equal to t = 0.2s, 0.5s, 1s and 5s.
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Numerical examples
The L2 norm of the relative error over time for three different models.
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The table contains the cumulative eigenvalues for the lid driven cavity test. The last
column contains the value of the inf-sup constant, in the supremizer stabilisation case, for
different different number of supremizer modes and with a fixed number of velocity and

pressure modes.

N Modes u p s β
1 0.978946 0.975406 0.980260 9.264e-05
2 0.994184 0.991528 0.995232 9.264e-05
3 0.997737 0.995385 0.997912 7.175e-04
4 0.998990 0.998116 0.999400 7.175e-04
5 0.999483 0.999270 0.999844 7.175e-04
10 0.999971 0.999971 0.999997 1.551e-02
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Numerical examples

The flow around a circular cylinder

ΓIn Γ0 Γs ΓOut
u u = (1, 0) u = (0, 0) u · n = 0 ∇u · n = 0
p ∇p · n = 0 ∇p · n = 0 ∇p · n = 0 p = 0

The properties of the presented algorithms have been tested also with
the benchmark of the laminar flow around a circular cylinder. In
this case the viscosity have been parametrized and results refer to a
parameter non experimented in the full order simulations. The
parameter space is given by 5 different values of the viscosity:
ν ∈ [0.005, 0.01]. These values of viscosity result into the values of
the Reynolds number Re ∈ [100, 200].
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Numerical examples

First four modes for velocity pressure and supremizers

Cumulative eigenvalues

N Modes u p s β
1 0.390813 0.793239 0.921046 2.608e-04
2 0.598176 0.85809 0.941746 4.492e-04
3 0.802176 0.911636 0.961438 7.869e-03
4 0.879096 0.934997 0.978072 1.662e-02
5 0.949519 0.955578 0.98669 1.662e-02
10 0.986025 0.992347 0.998307 1.098e-01
15 0.995922 0.997994 0.999732 1.199e-01
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Numerical examples
Comparison of the velocity field

Comparison of the pressure field
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Numerical examples

Comparison on the same time window
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• The velocity field is reproduced in a more accurate way using the Poisson
equation approach. This is due to the “pollution” given by the non-necessary
supremizer modes.

• On the other side the pressure field is better reproduced using a supremizer
approach.
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Numerical examples

Comparison on a longer time window
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• Test to check the accuracy of the methods on a longer time span.
• Also different values of the parameters have been checked.
• For both pressure and velocity, on a longer time window, the Poisson
equation approach gives better results.
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Numerical examples

Kinetic Energy Error
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Numerical examples

Computational costs
HF SUP-ROM PPE-ROM

Cavity Exp. 25min 7.64s 4.86s
Cylinder Exp. 18.5min× 6proc. 3.14s 0.971s

• The cavity example has run serially with OpenFOAM 5.0.
• The cylinder example has run in parallel with OpenFOAM 5.0.
• The reduced order models have run in serial in ITHACA-FV (In real
Time Highly Advanced Computational Applications for Finite Volumes) a
C++ OpenFOAM based library (linear algebra is based on Eigen C++)
that I developed. It is available on github
(https://github.com/mathLab/ITHACA-FV).

• In the worst case the speed up is equal to approx. 200.
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Conclusions

Conclusions
• A supremizer stabilization technique has been extended to a finite volume
setting.

• The supremizer stabilization have demonstrated to provide accurate results.
• It leads to an increase of the computational cost respect to a PPE approach
and into a less accurate reconstruction of pressure but permits to avoid (in
some cases complex) additional boundary conditions.

Future Outlooks
• Introduce the geometrical parametrization in order to deal with mesh motion
problems.

• Study efficient methods for affine decomposition of the differential operators.
• Investigate the stability of the ROM for long-time integration.
• Increasing Reynolds numbers (Poster Ali et al)
• Geometric parametrization for finite volumes

◦ Mapping to a reference Domain - Not always possible
◦ Exploitation of the Immersed Boundary Method
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Thank you for the attention !!
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