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Theses
. Key technologies in industry require Modeling, Simulation,

and Optimization (MSO) of complex dynamical systems.
. Most real world systems are multi-physics systems, with

different accuracies and scales in components.
. Modeling today becomes exceedingly automatized, linking

subsystems together.
. Large sets of real time data are available and must be used in

modeling and model assimilation.
. Modeling, analysis, numerics, control and optimization

techniques should go hand in hand.
. Most real world (industrial) models are too complicated for

optimization and control. Model reduction is a key issue.
. We need to be able to quantify errors and uncertainties in the

reduction process.
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What is model reduction?

... replace a big complicated (computational) model with a
(much) smaller and simpler (but still accurate) one.

. Everybody does this. (It is also called Science)

. One wants to have the most simple model for a specific goal:
analysis, simulation, optimization, or control.

. Ideally, reduced model should have good fidelity compared to
reality, for the given MSO goal.
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The MSO paradigm

Modeling, simulation, optimization (MSO) of real system.
. Identify MSO goal (simulation, optimization, stabilization, ...)
. Build a model hierarchy. Reduced models are just

components in the hierarchy.
. Analyze all sensitivities and errors (model, model reduction,

discretization, solution of equations, roundoff in finite
arithmetic.)

. Adaptively choose model in the hierarchy, space-time
discretization accuracy, and solver accuracy depending on
MSO goal and the required tolerance/uncertainty.
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German energy transformation
The German government has decided to move out of nuclear
energy and also to reduce CO2 emissions drastically.

Share of energy sources in gross power production in 2014
(2013 values in parentheses)
Source: AG Energiebilanzen, 2015.
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Scientific challenges

. The security of energy supply has to be guaranteed.

. Different energy sectors have to be coupled, e.g. green and
fossil energy. Power-to-gas, gas-to-power, etc.

. Different components of energy networks have very different
modeling accuracy.

. Different energy sectors live on very different (time) scales.

. Renewables require to deal with increased randomness and
decentralization. Energy customers become ’prosumers’.

. Dynamical rather than stationary approaches are needed.

How can we deal with these challenges in simulation,
optimization and control? Example in this talk: gas transport.
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SFBTRR 154

Collaborative Research Center Transregio
Modelling, simulation and optimization of Gas networks

Planning, simulation, optimization, and operation of gas network.

. HU Berlin

. TU Berlin

. Univ. Duisburg-Essen

. FA University Erlangen-Nürnberg

. TU Darmstadt

. Real industrial data (anonymized) from OGE.
Our project: Controlled coupling of hybrid network systems
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Components of gas flow model
System of partial differential equations with algebraic constraints
. 1D Euler eqs (with temperature) to describe flow in pipes.
. Network model, flow balance equations (Kirchhoff’s laws).
. Network elements: pipes, valves, compressors (controllers,

coolers, heaters).
. Surrogate and reduced order models.

. Erratic demand and nomination of transport capacity.

. Can we use gas network as energy storage for hydrogen or
methane produced from unused renewable energy.
Power to gas.
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Network size

. Gas networks are very large!

12 / 60



Network size

. Gas networks are very large!

12 / 60



Network size

. Gas networks are very large!

12 / 60



Network size

. Gas networks are very large!

12 / 60



Flow model: 1D Euler equations

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(p + ρv2) = − λ

2D
ρv |v | − gρh′,

∂

∂t

(
ρ(

1
2

v2 + e)
)
+

∂

∂x

(
ρv(

1
2

v2 + e) + pv
)

= −kw

D
(T − Tw ) ,

plus equations for real gas, p = RρTz(p,T ).
Variables/parameters:
. density ρ, kw heat transfer coefficient,
. temperature T , wall temperature Tw ,
. velocity v , g gravitational force,
. pressure p, λ friction coefficient,
. h′ slope of pipe, D diameter of pipe,
. e internal energy, R gas constant of real gas.
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Model hierarchy

Model hierarchy for gas flow (by no means complete).

P. Domschke, B. Hiller, J. Lang, C. Tischendorf, Technical Report SFBTRR 154, (2017)
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Model simplification I

Constant temperature→ the isothermal Euler equations.
Model M1:

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂

∂x
(
p + ρv2) = − λ

2D
ρv |v | − gρh′,

together with the state equation for real gases

p = ρ(1 + αp)RT .
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Simplification II

If v is small, neglect the term ∂
∂x

(
ρv2
)
→ semilinear model

Model M2:

∂ρ

∂t
+

∂

∂x
(ρv) = 0,

∂

∂t
(ρv) +

∂p
∂x

= − λ

2D
ρv |v | − gρh′,
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Space-time-Discretization
Discretization using an implicit box scheme.
For the scalar balance law

ut + f (u)x = g(u),

with initial conditions u(x ,0) = u0(x), the box scheme is

un+1
j−1 + un+1

j

2
=

un
j−1 + un

j

2
− ∆t

∆x

(
f n+1
j − f n+1

j−1

)
+ ∆t

gn+1
j−1 + gn+1

j

2
.

. At every step, a unique solution exists.

. Convergence of order 2 in space and order 1 in time.

. Space-Time-Adaptivity via step-size control and a posteriori
error analysis.

Kolb, Lang, and Bales. An implicit box scheme for subsonic compressible flow with dissipative source term. Numer. Algorithms,
53(2-3):293Ű307, 2010. DOI: 10.1007/s11075-009-9287-y.2010
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Simplification III

When a stationary model is assumed, i.e., ∂
∂t = 0, and h′ = 0,

two ODEs are obtained, which can be solved analytically.
Model M3:

ρv = const.,

p(x) =

√
p2

in −
λc2x

D
ρv |ρv |.

This algebraic model (Weymouth equation) is used in planning
and often further approximated by piecewise linear model.

Simplification IV: Reduced order models (later).
see also: Christian Himpe, Parametric Model Reduction for Gas Flow Networks, MOREPAS 2018, Poster
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Three level model hierarchy

Isothermal Euler
Equations (M1)

Semilinear
Model (M2)

Algebraic
Model (M3)

∂
∂x

(
ρv2
)

= 0

∂
∂t = 0,h′ = 0

Figure: Model Hierarchy

Which model for which simulation/optimization goal?
Can we use the hierarchy to control the errors?
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Sensitivities/error estimates

Determine sensitivities in parameters, error estimates,
distributions of uncertainties, when model is simplified,
discretized, reduced, or subjected to data uncertainty.

. The sensitivity/error analysis has to be done with the
simulation/optimization goal in mind.

. We need to carry out this analysis for the whole hierarchy.

. Use analytic formulas or adjoint equations.

. Determine a posteriori error estimates ηx , ηt , ηm in space, time,
and model (or data uncertainty) to control computational cost.

. Ern A., Vohralík, M. Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming,
discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53, 1058Ű1081, 2015.

. J.J. Stolwijk and V. M. Error analysis and model adaptivity for flows in gas networks. ANAL. STIINTIFICE ALE UNIV. OVIDIUS
CONSTANTA. SERIA MATEMATICA, 2018.
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Computational Cost Optimization
MSO Goal: Simulation time minimization
To optimize computational cost, choose cost function

F (m,nx ,nt) = Cm · nαm
x · n

βm
t

Tune (learn) constants Cm, αm, and βm from simulations.
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Minimization of CPU time
Search for a space-time-model error control which satisfies∑

j∈Jp
(ηm,j + ηx ,j + ηt ,j)

|Jp|
≤ tol

. Included in the flow code ANACONDA (TU Darmstadt).

. Test case: Gas network of |Jp| = 12 pipelines.

. Achieved computing time reductions of 80%.
. P. Domschke, A. Dua, J.J. Stolwijk, J. Lang, and V. M., Adaptive Refinement Strategies for the Simulation of Gas Flow in

Networks using a Model Hierarchy, Electronic Transactions Numerical Analysis, 2018.
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Minimization of compressor cost
Minimize compressor costs subject to
variable bounds, mass balance, compressor models.
Classical switched nonlinear optimal control problem

Optimization code steers the accuracy, the discretization error,
and chooses the model according to error estimates to obtain in
each step a feasible solution.

Theorem
Suppose that the error estimator leads to a local error reduction
for every arc in the pipe network and that every NLP is solved to
local optimality. Then, the NLP solver terminates after a finite
number of steps with an ε-feasible solution with respect to a
reference configuration.
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Example: Compressor cost optimization

Discretization, model, total error (y -axis) over course of
optimization (x-axis). Left: GasLib-40, right: GasLib-135.
. V. M., M. Schmidt, and J. Stolwijk, Model and Discretization Error Adaptivity within Stationary Gas Transport Optimization,

http://arxiv.org/abs/1712.02745, 2017.
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Further challenges

. Can we reduce the models further by model reduction?

. Can we use the same approach for power networks and
coupled power/gas networks?

. How about the different time scales?

. Can we couple in a network based framework?

. What is the right framework for modeling?
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Energy based modeling

. Choose representations of models so that coupling of
different physical domains works across many scales.

. Use energy as common quantity of different physical systems.

. We want a representation that is good for model coupling, that
is good for discretization, and that is close to physics.

. Is there such a Jack of all trades?

. A system theoretic way to deal with such energy based
modeling is that of port-Hamiltonian systems.

. P. C. Breedveld. Modeling and Simulation of Dynamic Systems using Bond Graphs, pages 128–173. EOLSS Publishers Co.
Ltd./UNESCO, Oxford, UK, 2008.

. B. Jacob and H. Zwart. Linear port-Hamiltonian systems on infinite-dimensional spaces. Operator Theory: Advances and
Applications, 223. Birkhäuser/Springer Basel CH, 2012.

. A. J. van der Schaft, D. Jeltsema, Port-Hamiltonian systems: network modeling and control of nonlinear physical systems. In
Advanced Dynamics and Control of Structures and Machines, CISM Courses and Lectures, Vol. 444. Springer Verlag, New
York, N.Y., 2004.

. A. J. van der Schaft, Port-Hamiltonian differential-algebraic systems. In Surveys in Differential-Algebraic Equations I,
173-226. Springer-Verlag, 2013. Port-Hamiltonian systems theory: An introductory overview.
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Port-Hamiltonian systems
Classical port-Hamiltonian (pH) ODE/PDE systems

ẋ = (J(x , t)− R(x , t))∇xH(x) + (B(x , t)− P(x , t))u(t),

y(t) = (B(x , t) + P(x , t))T∇xH(x) + (S(x , t) + N(x , t))u(t),

. H(x) is the Hamiltonian: it describes the distribution of
internal energy among the energy storage elements;

. J = −JT describes the energy flux among energy storage
elements within the system;

. R = RT ≥ 0 describes energy dissipation/loss in the system;

. B ± P: ports where energy enters and exits the system;

. S + N, S = ST , N = −NT , direct feed-through input to output.

. In the infinite dimensional case J,R,B,P,S,N are operators
that map into appropriate function spaces.
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Properties
. Port-Hamiltonian systems generalize Hamiltonian systems.
. Conservation of energy replaced by dissipation inequality

H(x(t1))−H(x(t0)) ≤
∫ t1

t0
y(t)T u(t) dt ,

. Port-Hamiltonian systems are closed under power-conserving
interconnection. Models can be coupled in modularized way.

. Minimal constant coefficient pH systems are stable and
passive.

. Port-Hamiltonian structure allows to preserve physical
properties in Galerkin projection, model reduction.

. Physical properties encoded in algebraic structure of
coefficients and in geometric structure associated with flow.

. Systems are easily extendable to incorporate multiphysics
components: chemical reaction, thermodynamics,
electrodynamics, mechanics, etc. Open/closed systems.

29 / 60



Bond graphs, Dirac structure

Can we add algebraic constraints, like e.g. Kirchhoff’s laws
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Port-Hamiltonian (P)DAEs
Definition (C. Beattie, V. M., H. Xu, H. Zwart 2017)
A linear variable coefficient (P)DAE of the form

Eẋ = [(J − R)Q − EK ] x + (B − P)u,
y = (B + P)T Qx + (S + N)u,

with E ,A,Q,R = RT ,K ∈ C0(I,Rn,n), B,P ∈ C0(I,Rn,m),
S + N ∈ C0(I,Rm,m) is called port-Hamiltonian DAE (pHDAE) if :

i) L := QT E d
dt −QT JQ −QT EK is skew-adjoint.

ii) QT E = ET Q is bounded from below by a constant symmetric H0.

iii) W :=

[
QT RQ QT P
PT Q S

]
≥ 0, t ∈ I.

New Hamiltonian defined as H(x) := 1
2xT QT Ex : C1(I,Rn)→ R.
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Properties
. Nonlinear version available (not much analysis though).
. Dissipation inequality still holds.
. PH DAE systems closed under power-conserving

interconnection. Models can be coupled in modularized way.
. PH DAE structure invariant under time varying basis changes.
. Canonical forms in constant and variable coefficient case.
. Port-Hamiltonian structure preserved under constraint

preserving Galerkin projection, model reduction.
. Representation is very robust to structured perturbations.
. C. Beattie, V. M., H. Xu, and H. Zwart, Linear port-Hamiltonian descriptor systems. https://arxiv.org/pdf/1705.09081.pdf
. C. Beattie, V. Mehrmann, and P. Van Dooren, Robust port-Hamiltonian representations of passive systems.

http://arxiv.org/abs/1801.05018
. N. Gillis, V. Mehrmann, and P. Sharma, Computing nearest stable matrix pairs. Numerical Linear Algebra with Applications,

2018. https://arxiv.org/pdf/1704.03184.pdf
. C. Mehl, V. M., and M. Wojtylak, Linear algebra properties of dissipative Hamiltonian descriptor systems.

http://arxiv.org/abs/1801.02214
. L. Scholz, Condensed Forms for linear Port-Hamiltonian Descriptor Systems. Preprint 09-2017, Institut f. Mathematik, TU

Berlin, 2017.
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Model reduction for pH systems

Every Galerkin projection MOR method preserves the structure
of pH systems Beattie/ Gugercin 2011. Replace

ẋ = (J − R)∇xH(x) + Bu, y = BT∇xH(x)

by reduced system

ẋr = (Jr − Rr )∇xr Hr (xr ) + Br u, yr = BT∇xr Hr (xr )

with x ≈ Vr xr , ∇xH(x) ≈Wr∇xr Hr (xr ), Jr = W T
r JWr ,

Rr = W T
r RWr W T

r Vr = Ir , Br = W T
r B.

If Vr and Wr are appropriate orthornormal bases, then the
resulting system is again pH and all properties are preserved.
Extension to pHDAEs in an obvious way.
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Gas transport model

v1 v2

v3

v4

e1

e2

e3

Figure: Graph G = (V, E) with vertices V = {v1, v2, v3, v4} and edges
E = {e1,e2,e3} defined by e1 = (v1, v2), e2 = (v2, v3), and
e3 = (v2, v4).

36 / 60



Gas transport pH-PDAE
. Model on every edge e ∈ E the conservation of mass and the

balance of momentum, z = (p,q).

ae∂tpe + ∂zqe = 0, e ∈ E ,
be∂tqe + ∂zpe + deqe = 0, e ∈ E ,

where pe, qe denote the pressure and mass flux, respectively.

. Encode in ae(t , z),be(t , z) > 0 physical properties of fluid and pipe,
in de(t , z) ≥ 0 damping due to friction, and introduce interior and
exterior vertices V0 and V∂ = V \ V0.

. Model conservation of mass and momentum at v ∈ V0 by∑
e∈E(v)

ne(v)qe(v) = 0

pe(v) = pf (v), e, f ∈ E(v),
where E(v) = {e : e = (v , ·) or e = (·, v)} is the set of edges
adjacent to v and ne(v) = ∓1 (flow direction).
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PH PDAE

. Inputs: pe(v) = uv , v ∈ V∂ , e ∈ E(v)

. Output: the mass flux in and out of the network via the exterior
vertices

yv = −ne(v)qe(v), v ∈ V∂ , e ∈ E(v),

. Initial conditions: p(0) = p0, q(0) = q0 on E for pressure and mass
flux.

. Quadratic Hamiltonian:

H =
1
2

∑
e∈E

∫
e

ae|pe|2 + be|qe|2dz.

Use this model for Galerkin projection.
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Discontinuous Galerkin discretization
Existence of unique solution for consistent initial conditions p0,
q0 and sufficiently smooth inputs (uv )v∈V∂ , in Egger/Kugler 2016.
Mixed finite element space discretization leads to index two
constant coefficient large scale pHDAE:

Eẋ = (J − R)x + Bu,
y = BT x ,

x(0) = x0,

here Q = I, S,N,P = 0, E = ET .

E =

M1 0 0
0 M2 0
0 0 0

 , J =

 0 −G 0
GT 0 NT

0 −N 0

 ,R =

0 0 0
0 D 0
0 0 0

 ,B =

 0
B̃2
0

 .
The discretized Hamiltonian is given by

H(x) = 1
2

xT Ex =
1
2
(xT

1 M1x1 + xT
2 M2x2).
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Consequences

. Continuous and discretized models close to the real physics.

. Conservation laws are included.

. Model can be used for structure preserving model reduction
via Galerkin projection.

. Whole model hierarchy can be built in pHDAE form.

. A posteriori error estimates for DG discretization.

. Error estimates for model reduction the same as for
discretization error.

. Reduced model can be added to model hierarchy.
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Galerkin MOR for gas flow

. Model reduction (projection spaces) via moment matching.

. Proof of Well-posedness, conservation of mass, dissipation
inequality, and exponentially stability of steady states.

. Specially structured (modified) Krylov method to satisfy
algebraic compatibility conditions.

. CS decomposition to guarantee Lagrangian structure in
approximation.

. No reduction of constraints.

. Efficient construction of projection spaces Vr ,Wr .

. Proof of a posteriori error bounds.

. H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, and V. M., On structure preserving model reduction for damped wave
propagation in transport networks, SIAM Journal Scientific Computing, to appear 2018. http://arxiv.org/abs/1704.03206
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Mesh Independence

Basis functions for the pressure and velocity computed with
space-discretized model on different meshes with mesh size
h = 1

20 , 1
40 , and 1

80 .

42 / 60



Splitting and CS decomposition

. Splitting of the projection matrix W = [W1; W2; W3]
corresponding to the solution components x = [x1; x2; x3].

. Even if columns of W are orthogonal, this is no longer true for
the columns of Wi .

. Re-orthogonalization is required.

. Splitting very sensitive to numerical errors.

. Use cosine-sine (CS) decomposition,[
W1

W2

]
=

[
U1 0
0 U2

] [
C
S

]
X>,

with U1, U2, and X orthogonal, and C,S diagonal with entries
C2

ii + S2
ii = 1.
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Pressure correction

With and without pressure correction via CS decomposition of
the Galerkin-projection space.

44 / 60



Small network
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Paramamatric MOR

Results for discretized model (blue) and reduced model (red)
with dim. 2,5,10 and damping parameter d = 0.1,1,5 (top to
bottom).
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Brake Squeal

. Disc brake squeal is a frequent and annoying phenomenon
(with cars, trains, bikes).

. Important for customer satisfaction, even if not a safety risk.

. Nonlinear effect that is hard to detect.

. The car industry is trying for decades to improve this, by
changing the designs of brake and disc.

Can we do this model based?
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Model based approach
Interdisciplinary project with car manufacturers + SMEs
Supported by German Minist. of Economics via AIF foundation.
N. Hoffmann, TU Hamburg-Harburg, Mechanics, V.M. TU Berlin
Mathematics, U. von Wagner, TU Berlin, Mechanics.
Goals:
. Develop model of brake system with all effects that may cause

squeal. (Friction, circulatory, gyroscopic effects, etc).
. Simulate brake behavior for many different parameters (disk

speed, material geometry parameters).
. Project on space assoc. with squealing evs.

. Optimization: Layout of shims.
. N. Gräbner, V. M., S. Quraishi, C. Schröder, U. von Wagner, Numerical methods for parametric model reduction in the

simulation of disc brake squeal ZAMM, Vol. 96, 1388Ű-1405, 2016.
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FE model details
Large differential-algebraic equation (DAE) system
dep. on parameters (here only disk speed displayed).

Mq̈ + (C1 +
ωr

ω
CR +

ω

ωr
CG)q̇ + (K1 + KR + (

ω

ωr
)2KG)q = f ,

. q vector of FE coefficients.

. M symmetric, pos. semidef., singular matrix,

. C1 symmetric matrix, material damping,

. CG skew-symmetric matrix, gyroscopic effects,

. CR symmetric matrix, friction induced damping,
(phenomenological)

. K1 symmetric stiffness matrix,

. KR nonsymmetric matrix modeling circulatory effects,

. KG symmetric geometric stiffness matrix.

. ω rotational speed of disk with reference velocity ωr .
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PHDAE formulation
FE model of disk brake (simplified M,K > 0)

Mq̈ + (D + G)q̇ + (K + N)q = f .

Rewrite as perturbed pHDAE system ż = (J − RD)Qz − RNQz,
where

J :=

[
G K + 1

2N
−(K + 1

2NH) 0

]
, Q :=

[
M 0
0 K

]−1

,

R := RD + RN =

[
D 0
0 0

]
+

[
0 1

2N
1
2NT 0

]
.

Instability and squeal arises only from indefinite perturbation
term RNQz. Change the damping to avoid instability?
Perturbation N is restricted (to FE nodes on pad).
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Spectral projection

Use spectral functions for Galerkin projection to get a reduced
order model.

. Project QEP:Pω(λ)v(ω) = (λ2M + λC(ω) + K (ω))v(ω) = 0 into
small subspace spanned by Q independent of ω.

. Projected QEP
I P̃ω(λ) = QT Pω(λ)Q = λ2QT MQ + λQT C(ω)Q + QT K (ω)Q

. How to choose Q?
I Sufficiently good approximation of evs with pos. real part;
I Ideally Q should contain good approximations to the desired

evecs for all parameter values;
I Construct Q in a reasonable amount of computing time.
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Space generation
. Construct a measurement matrix V ∈ Rn,km containing

’unstable’ evecs for a set of parameters ωi ,

V = [V (ω1),V (ω2),V (ω3), ...V (ωk )]

. Perform (partial) singular value decomposition (SVD) (cheap)
V = UΣZ H

Ṽ ≈ [ũ1, ũ2, . . . , ũd ]


σ1

σ2

σ3
. . .

σd

 [z̃1, z̃2, . . . , z̃d ]H

by omitting singular values that are small.
. Choose Q = [ũ1, ũ2, . . . , ũd ] to project Pω(µ).
. Adapt sampling set.
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Results with new Galerkin method
Industrial model 1 million dof, Python and MATLAB
implementation.

. Solution for every ω
I Solution with 300 dimensional TRAD subspace ∼ 30 sec
I Solution with 100 dimensional POD subspace ∼ 10 sec
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Power networks

DFG Priority program, SFB 910
. Collaborative Research Center SFB 910, Control of

self-organizing nonlinear systems: Theoretical methods and
concepts of application with Theoretical Physics.
Project: Analysis and computation of stability exponents for
delay differential-algebraic equations.

. DFG priority Programme 1984, Hybrid and multimodal energy
systems
Project: Computational Strategies for Distributed Stability
Control in Next-Generation Hybrid Energy Systems with Kai
Strunz, EE, TU Berlin

V. Mehrmann, R. Morandin, S. Olmi, and E. Schöll, Qualitative Stability and Synchronicity Analysis of Power Network Models in
Port-Hamiltonian form, 2017. https://arXiv:1712.03160
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Reactive flows/thermodynamics

. Navier-Stokes with reaction: R. Altmann und P. Schulze A
port-Hamiltonian formulation of the Navier-Stokes equations
for reactive flows Systems Control Lett., Vol. 100, 2017, pp.
51-55.

. Flows and Thermodynamics: A. M. Badlyan, B. Maschke, C.
Beattie, and V. M., Open physical systems: from GENERIC to
port-Hamiltonian systems, Proceedings of MTNS, 2018.

. Shifted POD for transport dominated problems: J. Reiss, P.
Schulze, J. Sesterhenn, and V. M., The shifted proper
orthogonal decomposition: A mode decomposition for multiple
transport phenomena. SIAM Journal Scientific Computing,
2018. https://arXiv:1512.01985v2
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Summary

. Goal oriented modeling, simulation, optimization.

. Energy based modeling for networks of multi-physics
multi-scale problems.

. Model hierarchies of port-Hamiltonian DAE models.

. Structured model reduction.
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Outlook

Many things To Do:
. Real time control, optimization.
. Further physical domains.
. Incorporate stochastics in models.
. Better time-discretization methods.
. Uncertainty quantification.
. . . .
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