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Problems with Jumps/Kinks

In many applications u(x , µ) has jumps or kinks:

I Hyperbolic problems: Shocks

I Elliptic problems with (parameter dependent) jumping
diffusion, e.g. ground water flow.

I Multi-phase flows

I Problems in the realm of level-set methods.

Figure: Schlieren image of a NACA airfoil (source: NASA)
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Separation of Variables

RB, POD, stochastic gradient/collocation are of the type

u(x , µ) ≈
n∑

i=0

ci (µ)ψi (x)

with different choices for ci (µ) and ψi (x)
 “staircasing behaviour”
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Via Kolmogrov n-width:

‖u(·, µ)− un(·, µ)‖L1 error & n−1



Jump locations

x

µ
µ
η1

η2

η3

jump location

snapshots u(·, ηi )

unknown u(·, µ)

interplation point

interplation target



Jump locations

x

µ
µ
η1

η2

η3

jump location

snapshots u(·, ηi )

unknown u(·, µ)

interplation point

interplation target



Jump locations

x

µ
µ
η1

η2

η3

jump location

snapshots u(·, ηi )

unknown u(·, µ)

interplation point

interplation target



Transformed snapshot interpolation
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I We need n snapshots for each ηi .

I We need n functions (x , µ)→ φ(µ, ηi )(x) for each ηi .



Transformed snapshot interpolation
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Error bound

Proposition

Let µ0, . . . , µn be Chebyshev nodes and assume that η → vµ(x , η)
has an analytic extension to the Bernstein Ellipse Eρ0 with radius
ρ0 > 1 for almost all x , µ.
Then for each 1 < ρ < ρ0 there is a c such that(∫

P
‖u(·, µ)− un(·, µ)‖2

L1(Ω)

dµ√
1− µ2

)1/2

≤ cρ−n.

I Depends on smoothness of the transformed snapshot vµ(x , η)
with respect to η

I Independent of smoothness of the snapshot u(x , µ) with
respect to µ



Construction of the inner transform

Transform given by initial value problem

d

dη
φ = F (η, x), φ(µ, µ) = x

and optimize

F = argmin
F

sup
µ∈Ptrain

‖u(·, µ)− un(·, µ;F )‖L1(Ω)

I Lipshitz continuous objective function

I Optimized via gradient descent

I Sufficiently many snapshots  global optima (proven in 1d).



Non-alignable jumps
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1d Parameter: h or hp refine

x

µ

I We have an error indicator from
the optimizer.

I hp-refine
I subdivide parameter domain,

or
I increase TSI degree n.

I Some hp refinement strategies
only rely on error indicators.



nd Parameter: “Tensorize”
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singularities are aligned with the coordinate axes!  TSI takes
care of this!
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No singular transforms

“Localizable” transforms φ(µ, η)(x) are given as the solution of an
initial value problem

d

dη
φ = Φ(φ, η), φ(η, η)(x) = x

Lemma

Assume that we have a shock topology change at µ̄ and that
|η − µ̄|Φ(η, x) is Lipschitz continuous with respect to η with
Lipschitz constant L. Then, we have

|φ(µ, η)(x)− φ(µ, η)(y)| ≤
∣∣∣∣η − µ̄µ− µ̄

∣∣∣∣L |x − y |.



Example: Burgers’ equation shock and rarefaction wave

Maximal error: 0.01582 x-grid: h = 0.01 ] snapshots: 21



Example: Compressible Euler, forward facing step

(a) no transform
µ = 2.3

(b) TSI µ = 2.3 (c) TSI + truth
µ = 2.3

(d) TSI + truth
µ = 2.9375



Long Term Goal: Connecting the Dots . . .
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I φ(µ, η)(x) has jump in x  same resolution than snapshot.

I  Gradient descent optimzer fails!

I  Smoothness penalties fail!
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Numerical Experiment



Thank you
for your attention


