h and hp Adaptive Interpolation of Transformed Snapshots for Parametric Functions with Jumps

G. Welper

Problems with Jumps/Kinks

In many applications $u(x, \mu)$ has jumps or kinks:

- Hyperbolic problems: Shocks
- Elliptic problems with (parameter dependent) jumping diffusion, e.g. ground water flow.
- Multi-phase flows
- Problems in the realm of level-set methods.

Figure: Schlieren image of a NACA airfoil (source: NASA)

Literature Overview

Constantine, laccarino, 2012	$\}$ Fallback to full model at jumps
Gerbeau, Lombardi, 2012, 2014	$\}$ Transforms for traveling waves
Taddei, Perotto, Quarteroni, 2015)
Ohlberger, Stephan Rave, 2013	
Reiss, Schulze, Sesterhenn, 2015	
Cagniart, Maday, Stamm, 2016	> Transforms
Rim, Moe, LeVeque, 2017	
Nair, Balajewicz, 2017	
W., 2015, 2017	J

Separation of Variables

RB, POD, stochastic gradient/collocation are of the type

$$u(x,\mu) \approx \sum_{i=0}^{n} c_i(\mu)\psi_i(x)$$

with different choices for $c_i(\mu)$ and $\psi_i(x)$ \rightsquigarrow "staircasing behaviour"

Via Kolmogrov *n*-width:

 $\|u(\cdot,\mu)-u_n(\cdot,\mu)\|_{L_1}$ error $\geq n^{-1}$

Jump locations

-- jump location

.

— snapshots
$$u(\cdot, \eta_i)$$

— unknown
$$u(\cdot, \mu)$$

Jump locations

- -- jump location
 - snapshots $u(\cdot, \eta_i)$
 - unknown $u(\cdot, \mu)$
 - interplation point
 - interplation target

Jump locations

- -- jump location
 - snapshots $u(\cdot, \eta_i)$
 - unknown $u(\cdot, \mu)$
 - interplation point
 - interplation target

Transformed snapshot interpolation

- We need *n* snapshots for each η_i .
- We need *n* functions $(x, \mu) \rightarrow \phi(\mu, \eta_i)(x)$ for each η_i .

Transformed snapshot interpolation

- We need *n* snapshots for each η_i .
- We need *n* functions $(x, \mu) \rightarrow \phi(\mu, \eta_i)(x)$ for each η_i .

Error bound

Proposition

Let μ_0, \ldots, μ_n be Chebyshev nodes and assume that $\eta \to \nu_{\mu}(x, \eta)$ has an analytic extension to the Bernstein Ellipse E_{ρ_0} with radius $\rho_0 > 1$ for almost all x, μ . Then for each $1 < \rho < \rho_0$ there is a c such that

$$\left(\int_{\mathcal{P}}\|u(\cdot,\mu)-u_n(\cdot,\mu)\|_{L_1(\Omega)}^2\frac{d\mu}{\sqrt{1-\mu^2}}\right)^{1/2}\leq c\rho^{-n}.$$

- Depends on smoothness of the transformed snapshot v_μ(x, η) with respect to η
- ► Independent of smoothness of the snapshot u(x, µ) with respect to µ

Construction of the inner transform

Transform given by initial value problem

$$\frac{d}{d\eta}\phi = F(\eta, x), \qquad \phi(\mu, \mu) = x$$

and optimize

$$F = \underset{F}{\operatorname{argmin}} \sup_{\mu \in \mathcal{P}_{train}} \|u(\cdot, \mu) - u_n(\cdot, \mu; F)\|_{L_1(\Omega)}$$

- Lipshitz continuous objective function
- Optimized via gradient descent
- ▶ Sufficiently many snapshots ~→ global optima (proven in 1d).

Non-alignable jumps

Changes in the jump set toplogy are local in parameter

Non-alignable jumps

Changes in the jump set toplogy are local in parameter

... on a "manifold"

1d Parameter: h or hp refine

- We have an error indicator from the optimizer.
- ► *hp*-refine
 - subdivide parameter domain, or
 - ▶ increase TSI degree *n*.
- Some *hp* refinement strategies only rely on error indicators.

nd Parameter: "Tensorize"

Tensor product polyomial interpolation

$$(I_n^2\otimes I_n^1)u=I_n^2(I_n^1u)$$

 \rightsquigarrow Second formula well defined for TSI.

nd Parameter: "Tensorize"

Tensor product polyomial interpolation

$$(I_n^2\otimes I_n^1)u=I_n^2(I_n^1u)$$

 \rightsquigarrow Second formula well defined for TSI.

1. (Selectively) Interpolate along μ^1

nd Parameter: "Tensorize"

Tensor product polyomial interpolation

$$(I_n^2\otimes I_n^1)u=I_n^2(I_n^1u)$$

 \rightsquigarrow Second formula well defined for TSI.

- 1. (Selectively) Interpolate along μ^1
- 2. Interpolate along μ^2 (with transform)

Tensorization of adpative approximations only makes sense if the singularities are aligned with the coordinate axes! \rightsquigarrow TSI takes care of this!

No singular transforms

"Localizable" transforms $\phi(\mu, \eta)(x)$ are given as the solution of an initial value problem

$$rac{d}{d\eta}\phi=\Phi(\phi,\eta), \qquad \qquad \phi(\eta,\eta)(x)=x$$

Lemma

Assume that we have a shock topology change at $\bar{\mu}$ and that $|\eta - \bar{\mu}| \Phi(\eta, x)$ is Lipschitz continuous with respect to η with Lipschitz constant L. Then, we have

$$|\phi(\mu,\eta)(\mathbf{x})-\phi(\mu,\eta)(\mathbf{y})|\leq \left|rac{\eta-ar{\mu}}{\mu-ar{\mu}}
ight|^L|\mathbf{x}-\mathbf{y}|.$$

Example: Burgers' equation shock and rarefaction wave

Maximal error: 0.01582

x-grid: h = 0.01

Example: Compressible Euler, forward facing step

Long Term Goal: Connecting the Dots ...

For humans it is easy to predict where the jumps meet.

Long Term Goal: Connecting the Dots ...

- For humans it is easy to predict where the jumps meet.
- Collisions at the singularities of the transform ODE (no uniqueness)

$$\frac{d\phi}{d\eta} = F(\eta, \phi), \qquad \phi(\mu, \mu) = x$$

- $\phi(\mu,\eta)(x)$ has jump in $x \rightsquigarrow$ same resolution than snapshot.
- Statistic optimization optimization
- Smoothness penalties fail!
- • •

Numerical Experiment

Thank you for your attention