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Surrogate models

Given is a high-fidelity model fV) : D — Y

» Large-scale numerical simulation

high-fidelity
model

» Achieves required accuracy

» Computationally expensive

. surrogate
Additionally, often have surrogate models model
surrogate
f(’) D y i—o K model
. ' Y : SuITogy surrogate
» Approximate high-fidelity (1) modd odel
> Often orders of magnitudes cheaper sedemmnnenian g LI >

Examples of surrogate models

data-fit models,
response surfaces,
machine learning

coarse-grid reduced basis, simplified models,
approximations proper orthogonal linearized models
decomposition
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Replacing high-fidelity model with surrogate

Replace (1) with a surrogate model

» Costs of outer loop reduced
i outer loop
» Often orders of magnitude speedups — .. —
application
Estimate depends on surrogate accuracy
. . = —
» Control with error bounds/estimators - =
> Rebuild if accuracy too low & =4
. . =}
» No guarantees without bounds/estimators S N
Issues high-fidelity
» Propagation of surrogate error on estimate model

» Surrogates without error control
» Costs of rebuilding a surrogate model
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Our approach: Multifidelity methods

Combine high-fidelity and surrogate models
» Leverage surrogate models for speedup

» Recourse to high-fidelity for accuracy outer loop
application

Multifidelity guarantees high-fidelity accuracy

» Occasional recourse to high-fidelity model > 5
» High-fidelity model is kept in the loop é E
» Independent of error control for surrogates 3 N
high-fidelity
Multifidelity speeds up computations model
» Adapt, fuse, filter with surrogate models surrogate
» Balance #solves among models model

[Brandt, 1977], [Hackbusch, 1985], [Bramble et al, 1990], [Booker et al, 1999], [Jones et
al, 1998], [Alexandrov et al, 1998], [Christen et al, 2005], [Cui et al, 2014]

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization; SIAM Review, 2018 (to appear)]
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1. Motivation for multifidelity methods

2. Multifidelity Monte Carlo estimation (MFMC)
3. Asymptotic analysis of MFMC

4. Adaptive surrogates and MFMC

5. Qutlook and conclusions
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1 P., Willcox & Gunzburger Optimal model management for multifidelity Monte
Carlo estimation. SISC, 2016.
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Uncertainty propagation as an outer loop application

High-fidelity (“truth”) model with costs w; > 0
fO.D Yy
Given random variable Z, estimate
s =E[fV(Z)]

Monte Carlo estimator with realizations z;,...,z, of Z

_ 1<
7 = -3z
i=1

Uncertainty propagation with Monte Carlo is outer-loop application
» Each high-fidelity model solve is computationally expensive
» Repeated model solves become prohibitive

[Rozza, Carlberg, Manzoni, Ohlberger, Veroy-Grepl, Willcox, Kramer, Benner, Ullmann, Nouy, Zahm, etc]
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MFMC: Control variates

Estimate E[A] of random variable A with Monte Carlo estimator

I R
a"zﬁga” at,...,ap~ A
Unbiased estimator E[3,] = E[A] with mean-squared error (MSE)
__ Var[A]
e(an) = n
Combine 3, with Monte Carlo estimator b, of E[B] of random variable B
Sa=3,+7(E[B]—b,), ~€R

Control variate estimator $4 is unbiased estimator E[$§4] = E[A] with MSE
e(8a) = (1 — p*)e(3n)

Correlation coefficient —1 < p <1 of Aand B

If p =0, same MSE as regular Monte Carlo

If |p| > 0, lower MSE

The higher correlated, the lower MSE of §4 [Nelson, 87]

8/36
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MFMC: Control variates and surrogate models

MOdelS P., Willeox, Gunzburger Optimal model
. for lity Monte Carlo
» High-fidelity model f(Y) : D — estimation. SISC, 2016

» Surrogates f ... fK . Dy
Exploit correlation of f()(Z) and f()(Z) for reducing MSE

MW7), f)
. Cov[f1(2), F1)(Z)] i=2,...,k

V/Var[fW)(Z)] Var[f()(Z )]
Related work: Combine multiple models for Monte Carlo estimation
» Multilevel Monte Carlo [Giles 2008], [Heinrich 2001], [Speight, 2009]
» RBM and control variates [Boyaval et al, 2010, 2012], [Vidal et al 2015]
» Data-fit models and control variates [Tracey et al 2013]
» Monte Carlo with low-/high-fidelity model [Ng & Eldred 2012]
» Two models and control variates [Ng & Willcox 2012, 2014]

= Need for arbitrary number of surrogates, any type of surrogates
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MFMC: Multifidelity Monte Carlo estimator

Take realizations of input random variable Z P., Willcox, Gunzburger, Optimal mode/

or lity Monte Carlo
estimation. SISC, 2016

21,202,273, ..

Evaluate model () at first m; realizations z4, ... ,Zm, of Z
f(zy), ..., fNzyn), i=1 k

Muiltifidelity Monte Carlo (MFMC) estimator

-(1)
Yy +§ Vi (ym, ym, )
~—

—_———
from HFM from surrogates

yeeey

0N
Il

» MFMC estimator § is unbiased estimator of s = E[f(})(Z)]

» Costs of each model evaluation 0 < ws, ..., wx € R give costs of MFMC
K
§) = Z miw;
i=1
» Selection of coefficients 72, ...,k and model evaluations my, ..., m.?

» Comparison in terms of costs/MSE to regular Monte Carlo estimation?

10/36



MFMC: Balancing work among models

Variance of MFMC estimator § is

2
o(8) = Varlil = 7 + Z (5 - =) 0~ 2unoae)

» Variance o2 of f(’)(Z)
» Correlation coefficient p; between f(1)(Z) and f()(Z)

Find m and ~ that minimize MSE for given computational budget g

arg min Var[3]
mERK v2,...,7kER
subjectto m;_;—m; <0, i=2,...,k,
-m <0,
w'm
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MFMC: Optimal sampling

Theorem 1 (P., Willcox, Gunzburger, 2016).

Optimization problem has unique (analytic) solution if p? > --- > p2 > 0 and

2 2
Wi-1 Pic1 — Pi

; 2 2
Wi Pi = Pit1

. i=2,....k (1)

Sketch of proof
» Establish necessary condition for local optima with Karush-Kuhn-Tucker
» Only one local optima with my < mp < -+ < my
» This local optima has smaller objective value than any with “<"

Variance reduction of MFMC § w.r.t. benchmark Monte Carlo )7(51)

k 2
(8) = (_Z Vi - p,al)) (")

[P., Willcox & Gunzburger Optimal model for multifidelity Monte Carlo estimation. SISC, 2016.]
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MFMC: Numerical example

Locally damaged plate in bending N
» Inputs: nominal thickness, load, damage
» Output: maximum deflection of plate
» Only distribution of inputs known

» Estimate expected deflection

Six models
» High-fidelity model: FEM, 300 DoFs (a) wing panel
» Reduced model: POD, 10 DoFs 1 0.08
» Reduced model: POD, 5 DoFs fos
» Reduced model: POD, 2 DoFs Eo.e 0074
» Data-fit model: linear interp., 256 pts 50_4 ii
» Support vector machine: 256 pts %0_2 0067
0 0.05
Var, corr, and costs est. from 100 samples 0 02 04 06 08 1

spatial coordinate x;

(b) damaged plate
13/36



MFMC: Speedups in uncertainty propagation

Computed on MAC cluster
1e+00 10 nodes a 64 cores

Monte Ca"'lo’ high—fidelity aloﬁe —l; total of 640 cores
1e-01 }  Monte Carlo, surrogate alone = = 1
le-02 multifidelity =t

1le-03 +
le-04 +
1e-05 F
le-06 +
le-07 +

estimated MSE

le-04 le-02  1e+00 1le+02 1e+04

runtime [s]

» Monte Carlo needs 12h runtime for estimate with error below 10~7
» Multifidelity provides estimator with error below 10~7 after 9 seconds
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MFMC: Combining many models

one model (Monte Carlo) =

le+00 +

le-01 } two models =t 4
three models e
six models  mf—

le-02

1le-03 |

le-04 |

estimated MSE

1le-05 +

1le-06 +

le-04 le-02  1e4+00 1le4+02 1le4-04

1e-07

runtime [s]

> Largest improvement from “single — two” and “two — three”
» Adding yet another reduced/SVM model reduces variance only slightly
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- Distribution

of #evals among models

102
98. 29%
99. 69% ’
X 109 1 - ity f@
2 1.36% I high-fidelity f
2, I reduced f®
% B reduced f4)
n (5)
= 10 2 ] -reduce(i f
: — e
: — R
@
10 1

%
® 0)0
%
K

(oA
%
& @{S‘

» MFMC distributes #evals among models depending on corr/costs
» Number of evaluation changes exponentially between models
» Highest #evals in data-fit models (cost ratio w; /wg ~ 10°)
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MFMC: Who else is using MFMC?

(MF)MC hydraulic conductivity estimation

— MC
— MFMC

10"

Multifidelity sensitivity analysis
> l|dentify the parameters of model with largest , 107}
influence on quantity of interest

» Large-scale variance estimation problem
» Multifidelity makes tractable global
sensitivity analysis with expensive models i
— Qian (MIT) with Earth Science at LANL * LosAlamos

E5T.1943
10° 10 10
Computational budget (s)

Variance of mean estimate

Uncertainty quantification in flutter problem

Figure: Elizabeth Qian

v

Highly flexible, high-aspect-ratio wing
Air density and root angle of attack uncertain

>
» Estimate expected flutter speed
>

MFMC reduced runtime by more
than 3 orders of magnitude

— with Air Force Research Laboratory &
Figure: Philip S. Beran
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1 P., Gunzburger & Willcox Convergence analysis of multifidelity Monte Carlo estimation.
Numerische Mathematik, 2018.
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MEFMC: Asymptotic analysis

Properties of MFMC in setting with f() £ (k)
» Existence and uniqueness
» Unbiased estimator of statistics of high-fidelity model (%)
» MSE in terms of costs and correlation coefficients

Now (“exact”) f and sequence f(1) f(®) .

» Estimate
E[f(Z)]
» MSE of MFMC estimator § that uses f(1), ... f(b) is
€(§) = Var[§] +E[f(Z) - )“(L)(Z)]2 Example: f®, 3@
L bi . f correspond to multilevel
variance 1as w.r.t.

discretization of f

Goal: Given tolerance € > 0
» Find L € N, #model evaluations m, coefficients  such that e(5) < e
» Bound costs c($)

[Brandt, 1977], [Goodman et al, 1989], [Heinrich, 2001], [Giles, 2008], [Cliffe, 2011]
19 /36



MFMC: Asymptotic results

Assumption: There exists 1 < h € R and rates 0 < o, 3,7 € R such that
» [E[f - fO) <h e, ¢eN
> wy 5 hﬂe7 {eN
> Var [f) — f-D] < p=7¢ (€N

(Regular) Monte Carlo estimator )7c(,L) achieves e(yc(,L)) < e with

C(y(gL)) < el A2

Theorem 2 (P., Gunzburger, Willcox, 2018).

If MEMC estimator exists and T > (3, then MFMC achieves e(8) S € with

c(§) et

» Costs bound independent of rates o and 3
> Agrees with results in multilevel Monte Carlo estimation [Giles, 2008]

[P., Gunzburger & Willcox: C. g lysis of multifidelity Monte Carlo estimation. Numerische Mathematik, 2018]
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AMEMC: Integrate model r

online budget

. outer loop

Jo application
e > N E
. 2 || nighfidelity || E
;8 Z model n

surrogate

model
L va—

surrogate

model

Adaptive MFME: (AMFh/;C)

Trade off adaptation (“deterministic approximation”) and sampling
» Surrogate model is constructed with outer-loop result in mind

> Related to “exploration vs. exploitation” in Bayesian optimization
>

Constructing goal-oriented surrogates [oden et al, 2000], [Bui-Thanh <t al, 2007],
[Lieberman and Willcox, 2013], [Spantini et al, 2017], [Li et al, 2018]

v
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AMFMC: Integrate model reduction into MFMC

high-fidelity
model

surrogate

model

Adaptive MFMC (AMFMC)
Trade off adaptation (“deterministic approximation”) and sampling

v

Surrogate model is constructed with outer-loop result in mind

»
> Related to “exploration vs. exploitation” in Bayesian optimization
» Constructing goal-oriented surrogates [oden et al, 2000], [Bui-Thanh et al, 2007],

[Lieberman and Willcox, 2013], [Spantini et al, 2017], [Li et al, 2018]
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AMFMC: Integrate model reduction into MFMC

outer loop
application

>
2
£
=
S
high-fidelity
model
surrogate
model

z dur

Adaptive MFMC (AMFMC)
Trade off adaptation (“deterministic approximation”) and sampling
Surrogate model is constructed with outer-loop result in mind
Related to “exploration vs. exploitation” in Bayesian optimization

Constructing goal-oriented surrogates [oden et al, 2000], [Bui-Thanh <t al, 2007],
[Lieberman and Willcox, 2013], [Spantini et al, 2017], [Li et al, 2018]

v

Construct goal-oriented and context-aware
surrogate for outer-loop application at hand

e Goal is outer-loop result

e Other models set the context in which
surrogate model will be used

Cheap surrogate with poor approximation quality
might be more useful than an expensive one that
is more accurate
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AMFMC: Integrate model reduction i

online budget total budget

outer loop )
Jo application
e : % \ “on—l;ne”
) £ = “offline”
i) 3 v
high-fidelity
model
L v L1/
surrogate
model

Adaptive MFMC (AMFMC)
» Trade off adaptation (“deterministic approximation”) and sampling
» Surrogate model is constructed with outer-loop result in mind
> Related to “exploration vs. exploitation” in Bayesian optimization
» Constructing goal-oriented surrogates [oden et al, 2000], [Bui-Thanh et al, 2007],

[Lieberman and Willcox, 2013], [Spantini et al, 2017], [Li et al, 2018]
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AMFMC: Integrate model reduction i

online budget total budget

. outer loop
Jo application
evaluate
® EN o (“online”)
= °
o =
(2) B -
%1) 3 n
hlghfﬁgelhty adapt (“offline”)
mode
. (_
surrogate
model
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online budget total budget total budget
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f 3 v
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AMEMC: Problem setup

High-fidelity model with normalized evaluation costs wy = 1
f:D—=Y
Surrogate model with n € N
f DY
Surrogate model approximates high-fidelity model in the sense
1—pf,§c1n*°‘, 0<a,a
Evaluation costs of surrogate model may grow with n as
w, < cn® 0<c,p

Costs of constructing surrogate £(n) are Won =n
» Constructing f(") requires n evaluations of f
» Evaluations of f dominate construction costs

» Construct costs are significant (e.g., model reduction)
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AMFMC: Trading off construction costs and sampling costs

MFMC estimator § with f and f(") and (“online”) budget g has MSE

2 2
N O
:;< 1—pa+ Wnﬁ%)

AMFMC splits total budget p between construction and sampling
» If spend n for constructing £(") budget g = p — n remains for sampling

2
e(%) = ( 1—pi+ Wﬂpr21)

» Measures error with respect to goal of estimating E[f(Z)]
» Takes construction costs n into account

» Measures efficacy of surrogate model for variance reduction (context)

Upper bound on ¢(5,)
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AMEMC: Existence, uniqueness, and convexity

Consider the objective function

g(n) (cln_o‘ + C2n5)

:p_n

Find n such that g(n) is minimized

min n
in g(n)

Theorem 3 (P., 2017).

The objective g is convex in (0, p) and therefore there exists a unique
i* € (0, p) that minimizes g(n) = there is an optimal trade-off

Define the AMFMC estimator $
» Computes A* evaluations of f to construct surrogate (")
» Use MFMC to combine f and surrogate f(?") with budget p — #*

[P., Multifidelity Monte Carlo estimation with adaptive low-fidelity models, 2017 (submitted)]
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AMFMC: Adaptive multifidelity Monte Carlo estimator

Upper bound for /* that is useful for “small” budgets p

Ak

p

a—+1

There exists 7 € N independent of p such that i* < 7* for p > 0
» Number of adaptations A* is bounded with respect to p
» Stop adapting surrogate model even with unlimited budget p — oo
» Surrogate models can be "too accurate” for multifidelity methods

Corollary 4 (P., 2017).
Cost complexity of AMFMC with w, =0 is

e(87) € O(p~~)

» Can interpret w, = 0 as E[f("")(Z)] is known
= control functionals [oates, Girolami, Chopin, 2016]
» Helps to understand case w, < 1 (f("") much cheaper than f)
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AMFMC: Anemometer

Anemometer problem
» Measure velocity of fluid

» Three inputs uniformly distributed in

FlowProfile

[0,10] x [0.1,10] x [1,10]
SenL. Heater SenR

» Output is velocity

» Estimate expected velocity
Figures: MORWiki

High-fidelity model
» Based on convection-diffusion equation
» Discretized with finite elements
» High-fidelity model has 29008 DoFs

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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AMFEMC: Surrogate model for anemometer problem

Surrogate model
» Gaussian process regression
» Take n realizations of Z

» Train on corresponding n outputs of £

Optimizing for A*
» One dimensional convex problem

» Numerically solve for A*

Adaptation of surrogate in AMFMC
» Numerically estimate rates from pilot runs

» Optimize for A* with Matlab's fmincon

error

costs [s]

le-01

estimate of 1 — p2 ——

rate v = 1.3187 = = = -
le-02

1e-03

le-04

1le-05
le+02 le+03 le+04

#adaptation samples n

measurements of costs W, =——j—
rate § ~ 0.56 - - - -

le-04

le-05

1le-06
le+02 le+03 le+04

#adaptation samples n
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AMFMC: Anemometer results

1e+00
1le-01 | E
w 1le-02 ¢ g
n
Z  1e03 ] -
_“J_J, ~
g le-04 + 1
& 1le-05 | Monte Carlo ]
—— AMFMC
1e—06 E — — p71 El
- pflfa .
le-07 : ‘ s

le402 1le+03 le+04 le+05 le+06
budget p (runtime [s])

» Speedups of up to 3 orders of magnitude compared crude Monte Carlo
» MSE of AMFMC decays with p~1=% in pre-asymptotic regime
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AMFMC: Anemometer optimal trade-off

le407
——— numerical approximation of A* e

le+06 I = = lower bound RN
S .
" - = = = upper bound L.
<  let05 |
IS
3 let+04 :
5
= 1le+03 -
a
S 1le402 |
(0]
F feto1 |

le4-00 * : :

le+02 le404 le+06

budget p

» Approximation of Ai* is bounded
» Lower and upper bounds seem tight in pre-asymptotic regime
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AMFMC: Comparison to static models

1le4-00

1le-01 t & 1
w le-02 + \\ ]
=
B ]
3
g le-04 + 1
d  1e-05 | ]

—+— AMFMC
le-06 | Static MEMC, n = 57 ]
Static MFMC, n = 568
1e-07 ‘ ‘ ‘

le402 1le+03 le+04 le+05 le+06
budget p (runtime [s])

» AMFMC optimally trades off adaptation and sampling costs
» Up to two orders of magnitude speedups compared to static models
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AMEMC: Beam example

le4+00
estimate of 1 — p2 —4—
rate « ~ 091 ===~
le-01
Beam problem o
5
» Length and height uniformly distributed °
le-02
[0.8,1.2] x [5 x 107* 5 x 1073]
1e-03 L L
. . le+02 le+03 le+04 le+05
» Output is displacement of beam sadaptation samples
» Estimate expected displacement
le-02
measurements of costs w,, =——f—
Models rate f~0.46 - - - -
» High-fidelity finite element model =
. . 2 1e03
» Surrogate is Gaussian process model g
» Measure rates numerically
le-04
le+02 le+03 le+04 le+05

#adaptation samples n
32/36



AMFMC: Beam results

1le-07
1e-08 ¢
1le-09 ¢
le-10 +
le-11 ¢
le-12 |
le-13 +
le-14 | > E

le-15 ‘ ‘ ‘ ‘
le+01 1e+02 1e+03 1le+04 1e+05 1le+06

budget p (runtime [s])

Monte Carlo

estimated MSE

» AMFMC achieves about an order of magnitude speedup
» Decay of MSE slows down from p~ 172 to p~!
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Outlook

Optimization under uncertainty

» Estimate statistics in optimization iteration 12
» Robust optimization N O;
2 05
Rare event simulation 04
» Estimate probability of rare event 0.2 |
» Crucial for risk-averse optimization T mean

Sensitivity analysis
0.8,

> Identify parameters of model that lead to 07— % .
largest variance in quantity of interest o Mulefdellty

3
2 o5
» Large-scale variance estimation problem g
& o1
Bayesian inverse problems oo f b f b fbo s
-0.1
. . 1 2 3 4 5 6
» Markov chain Monte Carlo sampling Index i
» Increase acceptance probability of moves Figure: Elizabeth Qian

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-

mization; SIAM Review, 2018 (to appear)] 35/36



Conclusions

1e+00

le-01 *\ ]
ué le-02 ‘\\ ]
= 1e03
2
£ le-04 1
£ 1e0s 1

—+— AMFMC
1e-06 Static MFMC, n = 57 1
Static MFMC, n = 568
1e-07

le+02 le+03 le+04 le+05 le+06
budget p (runtime [s])

Multifidelity methods

> Leverage surrogate models for runtime speedup
Recourse to high-fidelity model for accuracy guarantees
Optimally trade off approximation, sampling, and construction
Context aware construction of surrogate models

vYvyy

Our references
1 P., Willcox & Gunzburger Optimal model management for multifidelity Monte Carlo
estimation. SISC, 2016.
2 P., Gunzburger & Willcox: Convergence analysis of multifidelity Monte Carlo estimation.
Numerische Mathematik, 2018
3 P. Multifidelity Monte Carlo estimation with adaptive low-fidelity models. submitted, 2017.
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MFMC: Wing flutter problem setup

Flutter problem
» Uncertain inputs

» Angle of attack from 0.5° to 2.5°
» Air density, mass of tip vary by 5%

» Estimate expected flutter speed

High-fidelity model
» Based on Hodges-Dowell equations
» Nonlinear terms of >3rd order ignored
» FEM discretization with 10 elements

Low-fidelity models
> Spline interpolants on equidistant grid ~ gollaberation with Philip Beran (Air Foree
> Low-fidelity model (2 from 343 points

» Low-fidelity model £®) from 125 points

[Stanford and Beran, 2013], [Beran, Stanford,
and Wang, 2017]

[P., Beran, Willcox, 2018]
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MFMC: Wing flutter speedup results

1e+00 . .
high-fidelity model (1 alone

1e-02 MFMC with &), @ £ ]
w == MFMC with f), £(3)
2 le04 | ]
g
E le-06 | |
©
3 1le-08 |
®
£ lewo} ]
9]

le12 | ]

le-14 ‘ ‘

le+02 1le+03 le+04

online costs [s]

MFMC achieves significant speedup
» Low-fidelity models are 8 orders of magnitude cheaper than f(1)

» MFMC achieves about 7 orders of magnitude speedup
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MFMC: Distribution of work in wing flutter problem

le+12 T T
I MFMC with two models

£ let09 |
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1S
I

1le4+03 -

F(1) £ 3

Adding model f(?) changes #evals of model (3
» With f(®), model f®) is evaluated more often
» Demonstrates that interactions between models drives efficiency of MFMC
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MFMC: Distribution of work in wing flutter problem

le+12 T T
I MFMC with two models
] MFMC with three models
£ let09 |
®
=
©
3
o]
T le+06
£
I
le+03 |-
e | |
£ @ e

Adding model f(?) changes #evals of model (3
» With f(®), model f®) is evaluated more often
» Demonstrates that interactions between models drives efficiency of MFMC

30/36



MFMC: Distribution of work in wing flutter problem

le+12 T T
I MFMC with two models
] MFMC with three models
£ let09 |
®
=
©
3
o]
T le+06
£
I
le+03 |-
e | |
£ @ e

Adding model f(?) changes #evals of model (3
» With f(®), model f®) is evaluated more often
» Demonstrates that interactions between models drives efficiency of MFMC

30/36



MFMC: Distribution of work in wing flutter problem

le+12 T T
I MFMC with two models
] MFMC with three models
£ let09 |
®
=
©
3
o]
T le+06
£
I
le+03 |-
e |
£ @ e

Adding model f(?) changes #evals of model (3
» With f(®), model f®) is evaluated more often
» Demonstrates that interactions between models drives efficiency of MFMC

30/36



	Multifidelity Monte Carlo method
	Multifidelity Monte Carlo method
	AMFMC
	Multifidelity Monte Carlo method
	Conclusions

