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Outer loop applications

optimization
control inference

multi-discipline coupling

model calibration

uncertainty quantification

visualization
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Surrogate models
Given is a high-fidelity model f (1) : D → Y

I Large-scale numerical simulation
I Achieves required accuracy
I Computationally expensive

Additionally, often have surrogate models

f (i) : D → Y , i = 2, . . . , k

I Approximate high-fidelity f (1)

I Often orders of magnitudes cheaper
Examples of surrogate models
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Replacing high-fidelity model with surrogate

Replace f (1) with a surrogate model
I Costs of outer loop reduced
I Often orders of magnitude speedups

Estimate depends on surrogate accuracy
I Control with error bounds/estimators
I Rebuild if accuracy too low
I No guarantees without bounds/estimators

Issues
I Propagation of surrogate error on estimate
I Surrogates without error control
I Costs of rebuilding a surrogate model
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Our approach: Multifidelity methods
Combine high-fidelity and surrogate models

I Leverage surrogate models for speedup
I Recourse to high-fidelity for accuracy

Multifidelity guarantees high-fidelity accuracy
I Occasional recourse to high-fidelity model
I High-fidelity model is kept in the loop
I Independent of error control for surrogates

Multifidelity speeds up computations
I Adapt, fuse, filter with surrogate models
I Balance #solves among models

[Brandt, 1977], [Hackbusch, 1985], [Bramble et al, 1990], [Booker et al, 1999], [Jones et
al, 1998], [Alexandrov et al, 1998], [Christen et al, 2005], [Cui et al, 2014]

[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization; SIAM Review, 2018 (to appear)]
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Outline

1. Motivation for multifidelity methods

2. Multifidelity Monte Carlo estimation (MFMC)

3. Asymptotic analysis of MFMC

4. Adaptive surrogates and MFMC

5. Outlook and conclusions
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Uncertainty propagation as an outer loop application

High-fidelity (“truth”) model with costs w1 > 0

f (1) : D → Y

Given random variable Z , estimate

s = E[f (1)(Z )]

Monte Carlo estimator with realizations z1, . . . , zn of Z

ȳ (1)
n =

1
n

n∑
i=1

f (1)(z i )

Uncertainty propagation with Monte Carlo is outer-loop application
I Each high-fidelity model solve is computationally expensive
I Repeated model solves become prohibitive

[Rozza, Carlberg, Manzoni, Ohlberger, Veroy-Grepl, Willcox, Kramer, Benner, Ullmann, Nouy, Zahm, etc]
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MFMC: Control variates

Estimate E[A] of random variable A with Monte Carlo estimator

ān =
1
n

n∑
i=1

ai , a1, . . . , an ∼ A

Unbiased estimator E[ān] = E[A] with mean-squared error (MSE)

e(ān) =
Var[A]

n

Combine ān with Monte Carlo estimator b̄n of E[B] of random variable B

ŝA = ān + γ
(
E[B]− b̄n

)
, γ ∈ R

Control variate estimator ŝA is unbiased estimator E[ŝA] = E[A] with MSE

e(ŝA) = (1− ρ2)e(ān)

I Correlation coefficient −1 ≤ ρ ≤ 1 of A and B
I If ρ = 0, same MSE as regular Monte Carlo
I If |ρ| > 0, lower MSE
I The higher correlated, the lower MSE of ŝA [Nelson, 87]
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MFMC: Control variates and surrogate models

Models
I High-fidelity model f (1) : D → Y
I Surrogates f (2), . . . , f (k) : D → Y

P., Willcox, Gunzburger, Optimal model
management for multifidelity Monte Carlo
estimation. SISC, 2016

Exploit correlation of f (1)(Z ) and f (i)(Z ) for reducing MSE

ρi =
Cov[f (1)(Z ), f (i)(Z )]√
Var[f (1)(Z )]Var[f (i)(Z )]

, i = 2, . . . , k

Related work: Combine multiple models for Monte Carlo estimation
I Multilevel Monte Carlo [Giles 2008], [Heinrich 2001], [Speight, 2009]
I RBM and control variates [Boyaval et al, 2010, 2012], [Vidal et al 2015]
I Data-fit models and control variates [Tracey et al 2013]
I Monte Carlo with low-/high-fidelity model [Ng & Eldred 2012]
I Two models and control variates [Ng & Willcox 2012, 2014]

⇒ Need for arbitrary number of surrogates, any type of surrogates
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MFMC: Multifidelity Monte Carlo estimator

Take realizations of input random variable Z

z1, z2, z3, . . .

P., Willcox, Gunzburger, Optimal model
management for multifidelity Monte Carlo
estimation. SISC, 2016

Evaluate model f (i) at first mi realizations z1, . . . , zmi of Z

f (i)(z1), . . . , f (i)(zmi ) , i = 1, . . . , k

Multifidelity Monte Carlo (MFMC) estimator

ŝ = ȳ (1)
m1︸︷︷︸

from HFM

+
k∑

i=2

γi

(
ȳ (i)
mi
− ȳ (i)

mi−1

)
︸ ︷︷ ︸
from surrogates

I MFMC estimator ŝ is unbiased estimator of s = E[f (1)(Z )]
I Costs of each model evaluation 0 < w1, . . . ,wk ∈ R give costs of MFMC

c(ŝ) =
k∑

i=1

miwi

I Selection of coefficients γ2, . . . , γk and model evaluations m1, . . . ,mk?
I Comparison in terms of costs/MSE to regular Monte Carlo estimation?
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MFMC: Balancing work among models

Variance of MFMC estimator ŝ is

e(ŝ) = Var[ŝ] =
σ21
m1

+
k∑

i=2

(
1

mi−1
− 1

mi

)(
γ2i σ

2
i − 2γiρiσ1σi

)
I Variance σ2i of f (i)(Z )

I Correlation coefficient ρi between f (1)(Z ) and f (i)(Z )

Find m and γ that minimize MSE for given computational budget q

argmin
m∈Rk ,γ2,...,γk∈R

Var[ŝ]

subject to mi−1 −mi ≤ 0 , i = 2, . . . , k ,
−m1 ≤ 0 ,

wTm = q .
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MFMC: Optimal sampling

Theorem 1 (P., Willcox, Gunzburger, 2016).

Optimization problem has unique (analytic) solution if ρ21 > · · · > ρ2k > 0 and

wi−1

wi
>
ρ2i−1 − ρ2i
ρ2i − ρ2i+1

, i = 2, . . . , k (1)

Sketch of proof
I Establish necessary condition for local optima with Karush-Kuhn-Tucker
I Only one local optima with m1 < m2 < · · · < mk

I This local optima has smaller objective value than any with “≤”

Variance reduction of MFMC ŝ w.r.t. benchmark Monte Carlo ȳ
(1)
q

e(ŝ) =

(
k∑

i=1

√
wi

w1

(
ρ2i − ρ2i+1

))2

e(ȳ (1)
q )

[P., Willcox & Gunzburger Optimal model management for multifidelity Monte Carlo estimation. SISC, 2016.]
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MFMC: Numerical example
Locally damaged plate in bending

I Inputs: nominal thickness, load, damage
I Output: maximum deflection of plate
I Only distribution of inputs known
I Estimate expected deflection

Six models
I High-fidelity model: FEM, 300 DoFs
I Reduced model: POD, 10 DoFs
I Reduced model: POD, 5 DoFs
I Reduced model: POD, 2 DoFs
I Data-fit model: linear interp., 256 pts
I Support vector machine: 256 pts

Var, corr, and costs est. from 100 samples
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MFMC: Speedups in uncertainty propagation
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I Monte Carlo needs 12h runtime for estimate with error below 10−7
I Multifidelity provides estimator with error below 10−7 after 9 seconds

Computed on MAC cluster
10 nodes à 64 cores
total of 640 cores
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MFMC: Combining many models

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e-04 1e-02 1e+00 1e+02 1e+04

es
tim

at
ed

M
SE

runtime [s]

one model (Monte Carlo)

two models

three models

six models

I Largest improvement from “single → two” and “two → three”
I Adding yet another reduced/SVM model reduces variance only slightly
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MFMC: Distribution of #evals among models
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I MFMC distributes #evals among models depending on corr/costs
I Number of evaluation changes exponentially between models
I Highest #evals in data-fit models (cost ratio w1/w6 ≈ 106)
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MFMC: Who else is using MFMC?

Multifidelity sensitivity analysis
I Identify the parameters of model with largest

influence on quantity of interest
I Large-scale variance estimation problem
I Multifidelity makes tractable global

sensitivity analysis with expensive models
→ Qian (MIT) with Earth Science at LANL

Uncertainty quantification in flutter problem
I Highly flexible, high-aspect-ratio wing
I Air density and root angle of attack uncertain
I Estimate expected flutter speed
I MFMC reduced runtime by more

than 3 orders of magnitude
→ with Air Force Research Laboratory

100 101 102

Computational budget (s)

10-6

10-5

10-4

10-3

10-2

10-1

V
a
ri

a
n
ce

 o
f 

m
e
a
n
 e

st
im

a
te

(MF)MC hydraulic conductivity estimation

MC
MFMC

Figure: Elizabeth Qian

Figure: Philip S. Beran
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MFMC: Asymptotic analysis

Properties of MFMC in setting with f (1), f (2), . . . , f (k)

I Existence and uniqueness
I Unbiased estimator of statistics of high-fidelity model f (1)

I MSE in terms of costs and correlation coefficients

Now (“exact”) f and sequence f (1), f (2), . . .

I Estimate
E[f (Z )]

I MSE of MFMC estimator ŝ that uses f (1), . . . , f (L) is

e(ŝ) = Var[ŝ]︸ ︷︷ ︸
variance

+E[f (Z )− f (L)(Z )]2︸ ︷︷ ︸
bias w.r.t. f

Goal: Given tolerance ε > 0
I Find L ∈ N, #model evaluations m, coefficients γ such that e(ŝ) . ε

I Bound costs c(ŝ)

Example: f (1), f (2), . . .
correspond to multilevel
discretization of f

[Brandt, 1977], [Goodman et al, 1989], [Heinrich, 2001], [Giles, 2008], [Cliffe, 2011]
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MFMC: Asymptotic results

Assumption: There exists 1 < h ∈ R and rates 0 < α, β, τ ∈ R such that
I |E[f − f (`)]| . h−α` , ` ∈ N
I w` . hβ` , ` ∈ N
I Var

[
f (`) − f (`−1)

]
. h−τ` , ` ∈ N

(Regular) Monte Carlo estimator ȳ (L)
q achieves e(ȳ

(L)
q ) . ε with

c(ȳ (L)
q ) . ε−1ε−β/(2α)

Theorem 2 (P., Gunzburger, Willcox, 2018).

If MFMC estimator exists and τ > β, then MFMC achieves e(ŝ) . ε with

c(ŝ) . ε−1

I Costs bound independent of rates α and β
I Agrees with results in multilevel Monte Carlo estimation [Giles, 2008]

[P., Gunzburger & Willcox: Convergence analysis of multifidelity Monte Carlo estimation. Numerische Mathematik, 2018]
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AMFMC: Integrate model reduction into MFMC
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Adaptive MFMC (AMFMC)
I Trade off adaptation (“deterministic approximation”) and sampling
I Surrogate model is constructed with outer-loop result in mind
I Related to “exploration vs. exploitation” in Bayesian optimization
I Constructing goal-oriented surrogates [Oden et al, 2000], [Bui-Thanh et al, 2007],

[Lieberman and Willcox, 2013], [Spantini et al, 2017], [Li et al, 2018]
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AMFMC: Problem setup

High-fidelity model with normalized evaluation costs w0 = 1

f : D → Y

Surrogate model with n ∈ N

f (n) : D → Y

Surrogate model approximates high-fidelity model in the sense

1− ρ2n ≤ c1n
−α , 0 < c1, α

Evaluation costs of surrogate model may grow with n as

wn ≤ c2n
β , 0 < c2, β

Costs of constructing surrogate f (n) are w0n = n

I Constructing f (n) requires n evaluations of f
I Evaluations of f dominate construction costs
I Construct costs are significant (e.g., model reduction)
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AMFMC: Trading off construction costs and sampling costs

MFMC estimator ŝ with f and f (n) and (“online”) budget q has MSE

e(ŝ) =
σ2

q

(√
1− ρ2n +

√
wnρ2n

)2
AMFMC splits total budget p between construction and sampling

I If spend n for constructing f (n), budget q = p − n remains for sampling

e(ŝn) =
σ2

p − n

(√
1− ρ2n +

√
wnρ2n

)2
I Measures error with respect to goal of estimating E[f (Z )]

I Takes construction costs n into account
I Measures efficacy of surrogate model for variance reduction (context)

Upper bound on e(ŝn)

e(ŝn) .
1

p − n

(
c1n
−α + c2n

β
)
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AMFMC: Existence, uniqueness, and convexity

Consider the objective function

g(n) =
1

p − n

(
c1n
−α + c2n

β
)

Find n such that g(n) is minimized

min
n∈(0,p)

g(n)

Theorem 3 (P., 2017).

The objective g is convex in (0, p) and therefore there exists a unique
n̂∗ ∈ (0, p) that minimizes g(n) ⇒ there is an optimal trade-off

Define the AMFMC estimator ŝ∗n
I Computes n̂∗ evaluations of f to construct surrogate f (n̂

∗)

I Use MFMC to combine f and surrogate f (n̂
∗) with budget p − n̂∗

[P., Multifidelity Monte Carlo estimation with adaptive low-fidelity models, 2017 (submitted)]
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AMFMC: Adaptive multifidelity Monte Carlo estimator

Upper bound for n̂∗ that is useful for “small” budgets p

n̂∗ ≤ α

α + 1
p

There exists n̄∗ ∈ N independent of p such that n̂∗ ≤ n̄∗ for p > 0
I Number of adaptations n̂∗ is bounded with respect to p
I Stop adapting surrogate model even with unlimited budget p →∞
I Surrogate models can be “too accurate” for multifidelity methods

Corollary 4 (P., 2017).

Cost complexity of AMFMC with wn = 0 is

e(ŝ∗n ) ∈ O(p−1−α)

I Can interpret wn = 0 as E[f (n̂
∗)(Z )] is known
⇒ control functionals [Oates, Girolami, Chopin, 2016]

I Helps to understand case wn � 1 (f (n̂
∗) much cheaper than f )
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AMFMC: Anemometer

Anemometer problem
I Measure velocity of fluid
I Three inputs uniformly distributed in

[0, 10]× [0.1, 10]× [1, 10]

I Output is velocity
I Estimate expected velocity

High-fidelity model
I Based on convection-diffusion equation
I Discretized with finite elements
I High-fidelity model has 29008 DoFs

Figures: MORWiki

https://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Anemometer
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AMFMC: Surrogate model for anemometer problem

Surrogate model
I Gaussian process regression
I Take n realizations of Z
I Train on corresponding n outputs of f

Optimizing for n̂∗

I One dimensional convex problem
I Numerically solve for n̂∗

Adaptation of surrogate in AMFMC
I Numerically estimate rates from pilot runs
I Optimize for n̂∗ with Matlab’s fmincon
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AMFMC: Anemometer results
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I Speedups of up to 3 orders of magnitude compared crude Monte Carlo
I MSE of AMFMC decays with p−1−α in pre-asymptotic regime
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AMFMC: Anemometer optimal trade-off
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I Approximation of n̂∗ is bounded
I Lower and upper bounds seem tight in pre-asymptotic regime
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AMFMC: Comparison to static models
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I AMFMC optimally trades off adaptation and sampling costs
I Up to two orders of magnitude speedups compared to static models
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AMFMC: Beam example

Beam problem
I Length and height uniformly distributed

[0.8, 1.2]× [5× 10−4, 5× 10−3]

I Output is displacement of beam
I Estimate expected displacement

Models
I High-fidelity finite element model
I Surrogate is Gaussian process model
I Measure rates numerically
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AMFMC: Beam results
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I AMFMC achieves about an order of magnitude speedup
I Decay of MSE slows down from p−1−α to p−1
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1. Motivation for multifidelity methods

2. Multifidelity Monte Carlo estimation (MFMC)

3. Asymptotic analysis of MFMC
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Outlook
Optimization under uncertainty

I Estimate statistics in optimization iteration
I Robust optimization

Rare event simulation
I Estimate probability of rare event
I Crucial for risk-averse optimization

Sensitivity analysis
I Identify parameters of model that lead to

largest variance in quantity of interest
I Large-scale variance estimation problem

Bayesian inverse problems
I Markov chain Monte Carlo sampling
I Increase acceptance probability of moves
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Figure: Elizabeth Qian
[P., Willcox, Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and opti-
mization; SIAM Review, 2018 (to appear)]
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Conclusions
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Multifidelity methods
I Leverage surrogate models for runtime speedup
I Recourse to high-fidelity model for accuracy guarantees
I Optimally trade off approximation, sampling, and construction
I Context aware construction of surrogate models

Our references
1 P., Willcox & Gunzburger Optimal model management for multifidelity Monte Carlo

estimation. SISC, 2016.
2 P., Gunzburger & Willcox: Convergence analysis of multifidelity Monte Carlo estimation.

Numerische Mathematik, 2018
3 P. Multifidelity Monte Carlo estimation with adaptive low-fidelity models. submitted, 2017.
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MFMC: Wing flutter problem setup

Flutter problem
I Uncertain inputs

I Angle of attack from 0.5◦ to 2.5◦

I Air density, mass of tip vary by 5%
I Estimate expected flutter speed

High-fidelity model
I Based on Hodges-Dowell equations
I Nonlinear terms of ≥3rd order ignored
I FEM discretization with 10 elements

Low-fidelity models
I Spline interpolants on equidistant grid
I Low-fidelity model f (2) from 343 points
I Low-fidelity model f (3) from 125 points

collaboration with Philip Beran (Air Force
Research Laboratory)

[Stanford and Beran, 2013], [Beran, Stanford,
and Wang, 2017]

[P., Beran, Willcox, 2018]
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MFMC: Wing flutter speedup results
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MFMC achieves significant speedup
I Low-fidelity models are 8 orders of magnitude cheaper than f (1)

I MFMC achieves about 7 orders of magnitude speedup
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MFMC: Distribution of work in wing flutter problem
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Adding model f (2) changes #evals of model f (3)

I With f (2), model f (3) is evaluated more often
I Demonstrates that interactions between models drives efficiency of MFMC
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