

A Globally Mass Conservative Nonlinear Reduced Basis Method for Parabolic Free Boundary Problems

Christoph Lehrenfeld, Stephan Rave

Outline

- 1. Reduced Basis Methods for Advection Dominated Problems.
- A Globally Mass Conservative Nonlinear Reduced Basis Method for Parabolic Free Boundary Problems.

Reduced Basis Methods for Advection Dominated Problems

Parametric Model Order Reduction

Consider time-dependent parametric problems

$$\Phi: \mathcal{P} \to X([0,T]; V_h), \qquad s: X([0,T]; V_h) \to \mathbb{R}^S$$

where

- $ightharpoonup \mathcal{P} \subset \mathbb{R}^P$ parameter domain.
- ▶ V_h "truth" solution state space, dim $V_h \gg 0$.
- Φ maps parameters to solutions (hard to compute).
- s maps state vectors to quantities of interest.

Objective

Compute

$$s \circ \Phi : \mathbb{R}^P \to X([0, T]; V_h) \to \mathbb{R}^S$$

for many $\mu \in \mathcal{P}$ or quickly for unknown single $\mu \in \mathcal{P}$.

Reduced Basis Methods: Three Basic Ideas

Objective

Compute

$$s \circ \Phi : \mathbb{R}^P \to X([0, T]; V_h) \to \mathbb{R}^S$$

When Φ , s sufficiently smooth, quickly computable low-dimensional approximation of $s \circ \Phi$ should exist.

- ▶ **Idea 1:** State space projection:
 - ▶ Define approximation $\Phi_N : \mathcal{P} \to X([0, T]; V_N), N := \dim V_N \ll \dim V_h$, via (Petrov-)Galerkin projection.
 - ▶ Approximate $s \circ \Phi \approx s \circ \Phi_N$.
- ▶ **Idea 2:** Construct V_N from PODs of solution snapshots $\Phi(\mu_1), \ldots, \Phi(\mu_k)$.
- ▶ **Idea 3:** Select μ_1, \ldots, μ_k iteratively via greedy search over \mathcal{P} using quickly computable surrogate $\eta(\Phi_N(\mu), \mu) \geq \|\Phi(\mu) \Phi_N(\mu)\|$ (POD-GREEDY).
- + Hyper-reduction technique (EIM, DEIM, GEIM, Gappy POD, ...)

Example: RB Approximation of Li-Ion Battery Models

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation at the pore scale.

Full order model:

- 2.920.000 DOFs
- ► Simulation time: \approx 13h

Reduced order model:

- Snapshots: 3
- dim $V_N = 145$
- ▶ Rel. err.: $< 1.5 \cdot 10^{-3}$
- Reduction time: \approx 9h
- ► Simulation time: \approx 5m
- Speedup: 154

Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths d_N of the solution manifold, but RB will only work well for rapid decay!

$$d_N := \inf_{\substack{V_N \subseteq V_h \\ \dim V_N \le N}} \sup_{\substack{u \in \Phi(\mathcal{P}) \\ t \in [0, T]}} \|u(t) - \frac{P_{V_N}(u(t))\|.$$

Basic example

However: We can describe solution easily as

$$u_{\mu}(t,x) = u_0(x - \mu \cdot t \mod 1).$$

Nonlinear Approximation

General Idea

Write $u_{\mu}(t,x)$ as

where \mathcal{V} function space, $v_{\mu}(t) \in \mathcal{V}$ and $g_{\mu}(t)$ is element of Lie group G acting on \mathcal{V} .

- \triangleright $v_{\mu}(t,x)$ should be easier to approximate by a linear space than $u_{\mu}(t,x)$!
- Related/other approaches: [Rowley, Marsden, 2000] [Gerbeau, Lombardi, 2014] [Iollo, Lombardi, 2014] [Carlberg, 2015] [Taddei, Perotto, Quarteroni, 2015] [Reiss, Schulze, Sesterhenn, Mehrmann, 2015] [Cagniart, Maday, Stamm, 2016] [Nair, Balajewicz, 2017] [Welper, 2017] [Rim, Moe, LeVeque, 2018] . . .

Method of Freezing [Beyn, Thümmler, 2004], [Rowley et. al., 2000, 2003]

Definition (Method of Freezing)

With initial conditions $v_{\mu}(0) = u(0), g_{\mu}(0) = e$, solve:

$$\partial_t v_\mu(t) + \mathcal{L}_\mu(v_\mu(t)) + \mathfrak{g}_\mu(t) \cdot v_\mu(t) = 0$$

 $\Phi(v_\mu(t), \mathfrak{g}_\mu(t)) = 0$

 $g_{\mu}(t) = g(t)_{\mu}^{-1} \partial_t g_{\mu}(t)$

frozen PDAE

reconstruction equation

Orthogonality phase condition

$$\begin{split} \Phi(v,\mathfrak{g}) &= 0 \iff \partial_t v(t) \perp G.v(t) \\ &\iff (\mathcal{L}(v) + \mathfrak{g}.v, \, \mathfrak{h}.v) = 0 \quad \forall \mathfrak{h} \in G \end{split}$$

Test Problem

2D Burgers-type problem

Solve on $\Omega = [0,2] \times [0,1]$ with periodic boundaries, $t \in [0,0.3]$, $\vec{v} \in \mathbb{R}^2$ and $\mu \in [1,2]$:

$$\begin{split} \partial_t u + \nabla \cdot (\vec{v} \cdot u^\mu) &= 0 \\ u(0, x_1, x_2) &= 1/2(1 + \sin(2\pi x_1)\sin(2\pi x_2)) \end{split}$$

Let $G := \mathbb{R}^2$ act on u by periodic shifts.

Combining RB with the Method of Freezing

FrozenRB-Scheme for 2D-shifts [Ohlberger, R, 2013]

Solve

$$\begin{split} \partial_t v_{\mu(t),N} + & \textbf{\textit{P}}_{\textbf{\textit{V}}_{\textbf{\textit{N}}}} \circ \textbf{\textit{I}}_{\textbf{\textit{M}}}[\mathcal{L}_{\mu}](v_{\mu,N}(t)) - \mathfrak{g}_{\mu(t),N} \cdot (\textbf{\textit{P}}_{\textbf{\textit{V}}_{\textbf{\textit{N}}}} \circ \nabla)(v_{\mu,N}(t)) = 0 \\ & \left[(\partial_{x_i} v_{\mu,N}, \, \partial_{x_j} v_{\mu,N}) \right]_{i,j} \cdot \left[\mathfrak{g}_{\mu,N} \right]_j = \left[(\textbf{\textit{I}}_{\textbf{\textit{M}}}[\mathcal{L}_{\mu}](v_{\mu}), \, \partial_{x_i} v_{\mu,N}) \right]_i \end{split}$$

and

$$\partial_t g_\mu(t) = \mathfrak{g}_\mu(t)$$

with initial conditions $v_{\mu}(0) = u(0)$, $g_{\mu}(0) = (0,0)^{T}$.

- ► EI-GREEDY, POD-GREEDY algorithms for basis generation.
- ► Full offline/online decomposition.
- ▶ No additional evaluations of nonlinearity.

Results for the Burgers Problem

Left:

- ▶ 1.9 · *N* interpolation points.
- ▶ Test set: 100 random μ .

Bottom:

- dim $V_N = 20$, 38 interpolation points.
- $\mu = 1.5.$

A Globally Mass Conservative Nonlinear Reduced Basis Method for Parabolic Free Boundary Problems

A Free Boundary Problem

Osmotic cell swelling model [Lippoth, Prokert, 2012]

Given $\Omega(0) \subset \mathbb{R}^d$, $u(0) \in H^1(\Omega(0))$ and coefficients $u_0, \alpha, \beta, \gamma \in \mathbb{R}$, the **concentration** u(t) and **normal velocity** \mathcal{V}_n of $\partial\Omega(t)$ is given by:

$$\begin{array}{ll} \partial_t u - \alpha \Delta u = 0 & \text{in } \Omega(t) \\ \mathcal{V}_n u + \alpha \partial_n u = 0 & \text{on } \partial \Omega(t) \\ -\beta H + \gamma (u - u_0) = \mathcal{V}_n & \text{on } \partial \Omega(t) \end{array}$$

- u_0 : constant concentration in $\Omega(t)^c$
- ► H: mean curvature of $\partial Ω(t)$
- $\triangleright \alpha$: diffusivity of u
- ► $-\beta H$: surface tension
- $\gamma(u-u_0)$: osmotic pressure

Eulerian Approximation

- ► Consider $u(t) \in L^2(\Omega(t)) \hookrightarrow L^2(\mathbb{R}^d)$ as joint approximation space.
- moving domain boundary

 \Longrightarrow moving discontinuity in u(t)

 \implies slow singular value decay

Idea

Use nonlinear transformation

$$\Psi(t).u(t)(x):=u(t)[\Psi(t)[x]]$$

to freeze boundary $\Gamma(t)$ in space.

Fix reference domain

$$\hat{\Omega} := \Psi(t)^{-1}(\Omega(t)).$$

ALE Formulation

Fix reference domain $\widehat{\Omega}$ and introduce deformation field $\Psi(t)$ s.t. $\Psi(t)(\widehat{\Omega}) = \Omega(t)$. Pulling back the equations to $\widehat{\Omega}$ leads to the following time-discretization scheme:

1. Compute boundary velocity:

$$\begin{split} \int_{\hat{\Gamma}} J_{\Gamma} \hat{V}_{\Gamma}^{n-1} \cdot \hat{s} \, ds + \Delta t \int_{\hat{\Gamma}} J_{\Gamma} \beta \left((F^{n-1})^{-T} \nabla_{\hat{\Gamma}} \hat{V}_{\Gamma}^{n-1} \right) : \left((F^{n-1})^{-T} \nabla_{\hat{\Gamma}} \hat{s} \right) \, ds \\ = \int_{\hat{\Gamma}} \beta (P : (F^{n-1})^{-T} \nabla_{\hat{\Gamma}} \hat{s} + \gamma (\hat{u} - u_{\text{ext}}) \hat{s} \cdot ((F^{n-1})^{-T} \hat{v})) \, ds. \end{split}$$

2. Extend velocity to interior via harmonic extension:

$$\int_{\hat{\Gamma}} \frac{1}{h} (\nabla \hat{V}^{n-1} + (\nabla \hat{V}^{n-1})^T) : (\nabla \hat{s} + (\nabla \hat{s})^T) dx = 0, \qquad \hat{V}^{n-1} = \hat{V}_{\Gamma}^{n-1} \quad \text{on } \partial \hat{\Omega}.$$

3. Update deformation field:

$$\Psi^n = \Psi^{n-1} + \Delta t \hat{V}^{n-1}.$$

4. Update concentration field:

$$\begin{split} \int_{\hat{\Omega}} J^n \; \hat{u}^n \hat{v} \; dx + \Delta t \int_{\hat{\Omega}} J^n \; \hat{u}^n \; V_h^{n-1} \cdot ((F^n)^{-T} \nabla \hat{v}) dx \\ &+ \Delta t \int_{\hat{\Omega}} J^n \; \alpha \left((F^n)^{-T} \nabla \hat{u}^n \right) \cdot ((F^n)^{-T} \nabla \hat{v}) \; dx = \int_{\hat{\Omega}} J^{n-1} \; \hat{u}^{n-1} \hat{v} \; dx. \end{split}$$

ALE Formulation

- Rapid singular value decay of both concentration and deformation fields.
- After space discretization this corresponds to moving-mesh approach (ALE), where $\Psi^n(v)$ is the trajectory of the vertex v.
- In contrast to "parameterized domain problems", the domain deformation Ψ^n is part of the equation system.

Nonlinear RBM for Free Boundary Problems

Use standard RB machinery to construct ROM:

- Compute low-rank approximation spaces for \hat{u}^n , Ψ^n , \hat{V}^n_{Γ} via POD. (Could also use POD-GREEDY).
- Use EIM to approximate coefficient functions, vectors, tensors depending nonlinearly on Ψ^n .
- ► Similar to [Ballarin, Rozza, 2016] in context of FSI.

Numerical Experiment

- Parameterization:
 - $\alpha \in [0.1, 1]$
 - $\beta \in [0.01, 0.1]$
 - $\qquad \qquad \bullet_1, \delta_2 \in [0,1]$
- ► Snapshots: 3⁴
- FOM: 3988 + 7976 DOFS

Global Mass Conservation

Concentration update

$$\begin{split} \int_{\hat{\Omega}} J^n \; \hat{u}^n \hat{v} \; dx + \Delta t \int_{\hat{\Omega}} J^n \; \hat{u}^n \; V_h^{n-1} \cdot \left((F^n)^{-T} \nabla \hat{v} \right) dx \\ &+ \Delta t \int_{\hat{\Omega}} J^n \; \alpha \left((F^n)^{-T} \nabla \hat{u}^n \right) \cdot \left((F^n)^{-T} \nabla \hat{v} \right) \, dx = \int_{\hat{\Omega}} J^{n-1} \; \hat{u}^{n-1} \hat{v} \; dx. \end{split}$$

► Testing with $\hat{v} \equiv 1$ yields:

$$\int_{\Omega^n} u^n \, dx = \int_{\hat{\Omega}} J^n \, \hat{u}^n \, dx + 0 + 0 = \int_{\hat{\Omega}} J^{n-1} \, \hat{u}^n = \int_{\Omega^{n-1}} u^{n-1} \, dx$$

- Mass conservation is preserved by RB projection by adding 1 to RB for uⁿ.
- Inexact assembly of mass matrix due to El destroys mass conservation.

Global Mass Conservation with El

Note that in 2D:

$$\int_{\hat{\Omega}} J^n \, \hat{u}^n \hat{v} = m(\Psi^n, \Psi^n, \hat{u}^n, \hat{v}),$$

where

$$m(\Phi^n, \Psi^n, \hat{u}^n, \hat{v}) = \int_{\hat{O}} \partial_x \Phi_x^n \cdot \partial_y \Psi_y^n \cdot \hat{u}^n \cdot \hat{v} + \partial_x \Phi_y^n \cdot \partial_y \Psi_x^n \cdot \hat{u}^n \cdot \hat{v} \, dx.$$

- ► Could assemble mass matrix 4-tensor exactly.
- ► Relatively expensive. (dim RB = 30 ⇒ 6MB for reduced tensor)
- 5-tensor in 3D!
- Better approach:
 - 1. Assemble mass matrix using El.
 - 2. Assemble 3-tensor $m(\Phi^n, \Psi^n, \hat{u}^n, 1)$ exactly and set corresponding row of mass matrix.

Outlook: Remeshing

Strongly anisotropic mesh deformations in ALE schemes lead to:

- bad approximation spaces.
- ill-conditioned system matrices.

Possible MOR approach:

- In FOM: Locally adapt mesh \hat{T}_h on $\hat{\Omega}$ s.t. $\Psi^n(\hat{T}_h)$ has good shape regularity properties.
- Solve extension problem for \hat{V}_{Γ}^n on Ω^n instead of $\hat{\Omega}$.
- Use "RB for AFEM" methods to construct ROM [Ullmann, Rotkvic, Lang, 2016]
 [Yano 2016] [Ali, Steih, Urban, 2017] [Hinze, Gräßle, 2017].
- Deformation-dependent norms?
- Dictionary-based approaches?

Thank you for your attention!

Ohlberger, R, Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing, C. R. Math. Acad. Sci. Paris, 351 (2013).

Ohlberger, R, *Reduced Basis Methods: Success, Limitations and Future Challenges*, Proceedings of ALGORITMY 2016.

Milk, R, Schindler, pyMOR – Generic Algorithms and Interfaces for Model Order Reduction SIAM J. Sci. Comput., 38(5), 2016. http://www.pymor.org/

My homepage (with FrozenRB code) http://stephanrave.de/